
CS 376 Computer Vision
Spring 2018
Assignment 4

Out: Tuesday April 3
Due: Tuesday, April 17 11:59 PM

Visual search from mobile phone photos

For this problem, you will implement visual search methods to retrieve relevant database images
for a query image taken on a mobile phone containing an object of interest, such as a book,
printed material, video, or landmark building.

Data

We are providing image data and some starter code for this assignment. You can access the
image dataset and pre-computed SIFT features here /v/filer4b/v45q002/data. The data
takes about 4G, so you should *not* try to copy it to your home directory. Just point to the data
files directly in your code.

There are four directories containing four different types of images: video frames, print, landmarks,
and book covers. For the video frame type, a reference image is from a video and the query is
from a photo taken of a screen playing that video. For the print type, the reference is a clean file
of, e.g., a newspaper page, and the query is a mobile phone photo of the physical newspaper.
For the landmarks type, the images contain building facades outdoors. Finally, the book covers
type consists of reference catalog images of a book and query images of mobile phone photos of
the book amidst clutter.

Within each of these directories, there are several sub-directories. One of them is always
“Reference”. That directory contains the “database” images. The other directories are named
by camera types; they correspond to the different mobile phone cameras used to capture a set of
queries. For example, an “iPhone” sub-directory contains query images that were taken with an
iPhone. They are typically noisier, lower-resolution captures of the object compared to its
Reference view.

In each of those directories (Reference, iPhone, etc.) you will find jpg images and precomputed
SIFT features. The latter is saved as a .mat file per image. For example, image 001.jpg has
the associated file 001.jpg.sift.mat. In each .mat file, there are two key variables:

 frames 4 x n // contains location, scale, orientation data for the n SIFT patches
 // column i contains (x, y, scale, orientation) for the i-th SIFT patch

 desc 128 x n // contains the 128-dimensional SIFT descriptors as columns

where n is the number of interest points that were detected for that image.

Note that the naming is significant: book_covers/Reference/001.jpg is a picture of the
same object instance as book_covers/iPhone/001.jpg. You will need to use this alignment
once you evaluate your method, to score how frequently it is retrieving the correct database
image as its top result(s).

Provided code

These are the provided code files, available in the shared /v/filer4b/v45q002/code
directory.

 a4starter.m: Run this first and make sure you understand the data format and the files
(jpgs/mat) as described above. It is a script that shows a loop of data files, and how to
access each descriptor via frames and desc. It also shows how to use some of the
other functions below.

 displaySIFTFeatures.m: given SIFT descriptor info, it draws the patches on top of an
image

 getPatchFromSIFTParameters.m: given SIFT descriptor info, it extracts the image
patch itself and returns as a single image.

 showMatchingPatches.m: given SIFT descriptor info and images, together with
matches computed between some number of their features, display the matched patches.
This is useful to visualize what matches your code has computed.

 showLinesBetweenMatches.m: an alternative display function that shows lines
connecting the matches (no patches overlaid).

 dist2.m: a fast implementation of computing pairwise distances between two matrices
for which each row is a data point

 kmeansML.m: a faster k-means implementation that takes the data points as columns

You are not required to use any of these functions, but you will probably find them helpful.

Also download the VLFeats library here: http://www.vlfeat.org/. Follow their instructions for
setup. For Matlab, this entails calling >>> run('VLFEATROOT/toolbox/vl_setup'); where
VLFEATROOT is the directory where you downloaded the code. See
http://www.vlfeat.org/install-matlab.html. The provided scripts use functions from VLFeats for
SIFT feature extraction and displaying matched features. The provided script a4starter.m will
demonstrate some of the provided display code as well as a simple single feature match.

What to implement and discuss in the writeup

Write one script for each of the following (along with any helper functions you find useful), and in
your pdf writeup report on the results, explain, and show images where appropriate. Run/read
the file a4starter.m to see how to access the provided data and display and extract patches
and their matches (which you’ll need to compute).

1. Raw descriptor matching [20 pts]: Given two images, load their SIFT descriptors and
compute the nearest neighbor matches. Note, no visual vocabulary should be used for
this one. Name your script rawDescriptorMatches.m. Use it to demonstrate
matching on one image pair containing the same object: for each patch in the first image,
extract the best available match in the second image in terms of lowest Euclidean
distance in SIFT space. Display the results as a figure. If the number of descriptors is so
high that it looks cluttered, randomly downsample those you include in the display.

2. Visualizing the vocabulary [20 pts]: Build a visual vocabulary with k-means. Use a
representative (large but manageable) corpus of descriptors from the images. Display
example image patches associated with two of the visual words. Choose two words that
are distinct to illustrate what the different words are capturing, and display enough patch
examples so the word content is evident (e.g., say 10-15 patches per word displayed).
See provided helper functions getPatchFromSIFTParameters and kmeansML,
and feel free to re-use your code from the textons assignment. Explain what you see.
Name your script visualizeVocabulary.m.

3. Full frame queries [20 pts]: Write code to do bag-of-words matching, using a linear
scan through all the “database” reference frames. The similarity measure is the
normalized inner product between two bag of words histograms. After testing your code
for bag-of-words visual search, choose 2 different mobile phone image queries from the
entire dataset (from any of the types: print, book cover, etc.) to serve as interesting
successful queries, and 1 other query to serve as an interesting failure case query.
Display the M=5 most similar reference images to each of these queries (in rank order)
based on the normalized scalar product between their bag of words histograms. Briefly
explain the results. Name your script bagOfWordsQueries.m

4. Quantitatively evaluate your results for retrieval [20 pts]: Using the bag of words
method from part 3 above, evaluate your code systematically on all the provided data. In
particular, process each query image (all non-Reference images) in turn, searching
through all Reference images for their bag of words similarity. Sort the Reference
images by their similarity. Then report the average “top-K” accuracy for each type of
images, for K=1,3,5. That is, record the fraction of book cover queries for which the
correct Reference image appears in your top K retrieved results; do the same for each
type in turn (print, landmarks, book covers, video frames). You can informally experiment
with the vocabulary size to understand the sensitivity of your results and select a
reasonable value. Report a table with the numerical results in your writeup. Analyze the
performance. Which types fare better/worse with this approach, and why? Discuss your
findings and use illustrative examples where relevant. Name your script
quantitativeEvaluation.m

5. Spatial verification [20 pts]: Write code to perform spatial verification via an affine
alignment with RANSAC. The verification stage should return the number of inliers found
for a given pair of images. Then, for a given query image of your choosing, run this
spatial verification stage on a shortlist of the top T ranked Reference images according to
the bag of words similarity. Rerank that shortlist by the inlier counts. Choose a query
case where this verification improves the rank of the correct Reference image. Show the
matches before and after verification. Display the results and discuss briefly. Name your
script spatialVerification.m.

III. OPTIONAL : Extra credit (up to 10 points each, max 15 points total)

 [10 pts] Stop list and tf-idf. Implement a stop list to ignore very common words, and
apply tf-idf weighting to the bags of words. Create an experiment to illustrate the impact
on your results and discuss.

 [5 pts] Add a “ratio test” functionality to part 1 above that discards ambiguous
neighbor matches (see lecture 13). Display the results for a matched pair of images
where the ratio test appears valuable.

 [10 pts] Quantitatively evaluate the results of adding spatial verification to the bag of
words shortlist. Compare the performance before and after, again broken down per
image type.

 [5 pts] Augment the descriptor set with complementary interest operator(s) beyond the
DoG used for the pre-computed features, and discuss the results.
http://www.robots.ox.ac.uk/~vgg/research/affine/

 Have something else you want to try? Run it by us.

Acknowledgements

The image data we are using comes from the Stanford Mobile Visual Search Dataset:

Chandrasekhar, Vijay and Chen, David and Tsai, Sam and Cheung, Ngai-Man and
Chen, Huizhong and Takacs, Gabriel and Reznik, Yuriy and Vedantham,
Ramakrishna and Grzeszczuk, Radek and Bach, Jeff and Girod, Bernd. (2013).
Stanford Mobile Visual Search Dataset. Stanford Digital Repository. Available
at: http://purl.stanford.edu/rb470rw0983

The figure above is taken from the paper “The Stanford Mobile Visual Search Data Set” by
Chandrasekhar etal., ACM MMSys 2011.

Submission instructions: what to hand in

Please make a single zip file to submit on Canvas with:

 Your well-documented Matlab code .m files named as specified above.

 A pdf file containing

o Your name and CS login ID at the top.

o Your image results and accompanying explanations.

o (optional): Any results and descriptions for extra credit portions. For max credit
explain what you implemented and also interpret the results. Please indicate
clearly in the pdf what parts of the extra credit you did and which submitted code
files are involved.

