Image warping and stitching

Last time

- Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

Robust feature-based alignment
Robust feature-based alignment

- Extract features
- Compute putative matches

 Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute putative matches

 Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute putative matches

 Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

 Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesis-and-verify loop

Source: R. Raghu
How many trials for RANSAC?

To ensure good chance of finding true inliers, need sufficient number of trials, S.

Let p be probability that any given match is valid

Let P be the total prob of success after S trials.

Likelihood in one trial that all k random samples are inliers is \(p^k \)

\[
1-P = (1-p^k)^S
\]

Likelihood that all S trials will fail is

Required minimum number of trials

\[
S = \frac{\log(1-P)}{\log(1-p^k)}
\]

Kristen Grauman

Last time: RANSAC for fitting a **model**
(line)…

What about fitting a **transformation** (e.g., translation)?

RANSAC: General form

- **RANSAC loop:**
 1. Randomly select a **seed group** on which to base transformation estimate (e.g., a group of matches)
 2. Compute transformation from seed group
 3. Find inliers to this transformation
 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers
RANSAC example: Translation

Putative matches

Select one match, count inliers

Select one match, count inliers
RANSAC example: Translation

Another example
Automatic scanned document rotater using Hough lines and RANSAC

https://www.youtube.com/watch?v=O0v9FAk43kY

RANSAC pros and cons
- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - Parameters to tune
 - Doesn’t work well for low inlier ratios (too many iterations, or can fail completely)
 - Can’t always get a good initialization of the model based on the minimum number of samples

Slide credit: Lana Lazebnik
Today

- Image mosaics
 - Fitting a 2D transformation
 - Affine, Homography
 - 2D image warping
 - Computing an image mosaic

Mosaics

Obtain a wider angle view by combining multiple images.

Main questions

Alignment: Given two images, what is the transformation between them?

Warping: Given a source image and a transformation, what does the transformed output look like?
2D Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Affine transformations are combinations of …
- Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Projective transformations:
- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

2D transformation models

- Similarity (translation, scale, rotation)
- Affine
- Projective (homography)
How to stitch together a panorama (a.k.a. mosaic)?

• Basic Procedure
 – Take a sequence of images from the same position
 – Rotate the camera about its optical center
 – Compute transformation between second image and first
 – Transform the second image to overlap with the first
 – Blend the two together to create a mosaic
 – (If there are more images, repeat)

• …but wait, why should this work at all?
 – What about the 3D geometry of the scene?
 – Why aren’t we using it?

Pinhole camera

• Pinhole camera is a simple model to approximate imaging process, perspective *projection*.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Mosaics

Obtain a wider angle view by combining multiple images.
Mosaics: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Source: Alyosha Efros

Image reprojection

The mosaic has a natural interpretation in 3D
- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Source: Steve Seitz

Image reprojection

Basic question
- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2

Answer
- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Source: Alyosha Efros
Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection:
- rectangle should map to arbitrary quadrilateral
- parallel lines aren’t
- but must preserve straight lines
called Homography

\[
\begin{bmatrix}
wx' \\
wy' \\
w
\end{bmatrix}
=
\begin{bmatrix}
a & b & c & x \\
d & e & f & y \\
g & h & i & 1
\end{bmatrix}
\begin{bmatrix}
p' \\
p
\end{bmatrix}
\]

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of \(H \) are the unknowns...

Solving for homographies

\(p' = Hp \)

Can set scale factor \(i = 1 \). So, there are 8 unknowns.
Set up a system of linear equations:

\[
Ah = b
\]

where vector of unknowns \(h = [a, b, c, d, e, f, g, h] \)

Need at least 8 eqs, but the more the better...
Solve for \(h \). If overconstrained, solve using least-squares:

\[
\min \| b - Ah \|
\]

>> help lmdivide
Homography

\[(x, y) \rightarrow (x', y') = \begin{bmatrix} w & x & x' \\ w & y & y' \\ w & 1 & 1 \end{bmatrix} \]

To apply a given homography \(H \)
- Compute \(p' = Hp \) (regular matrix multiply)
- Convert \(p' \) from homogeneous to image coordinates

RANSAC for estimating homography

RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography \(H \)
3. Compute inliers where \(SSD(p_i', Hp_i) < \varepsilon \)
4. Keep largest set of inliers
5. Re-compute least-squares \(H \) estimate on all of the inliers

Today

- Image mosaics
 - Fitting a 2D transformation
 - Affine, Homography
 - 2D image warping
 - Computing an image mosaic
A2 Examples

Scott Staniewicz

Andrew Romanyk
Christopher Gamberg

All Filters

Only Blob Filters

Thomas Lam

William Kuglen
Figure 12: Planets with different bin sizes of radius 100
Today

- Image mosaics
 - Fitting a 2D transformation
 - Affine, Homography
 - 2D image warping
 - Computing an image mosaic
Image warping

Given a coordinate transform and a source image \(f(x,y) \), how do we compute a transformed image \(g(x',y') = f(T(x,y)) \)?

Forward warping

Send each pixel \(f(x,y) \) to its corresponding location \((x',y') = T(x,y) \) in the second image.

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels \((x',y') \) — Known as “splatting”
Inverse warping

Get each pixel \(g(x', y') \) from its corresponding location \((x, y) = T^{-1}(x', y') \) in the first image.

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
– nearest neighbor, bilinear...

Bilinear interpolation

Sampling at \(f(x, y) \):

\[
f(x, y) = (1 - a)(1 - b) f(i, j) + a(1 - b) f(i + 1, j) + ab f(i + 1, j + 1) + (1 - a)b f(i, j + 1)
\]
Recall: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Source: Alyosha Efros

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation (homography) between second image and first using corresponding points.
 - Transform the second image to overlap with the first.
 - Blend the two together to create a mosaic.
 - (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies

Source: Steve Seitz
Image rectification

Analysing patterns and shapes

What is the shape of the bw floor pattern?

Homography

Automatically rectified floor

The floor (enlarged)

Automatic rectification

From Martin Kemp The Science of Art (manual reconstruction)

Slide from Antonio Criminisi

Slide from Antonio Criminisi

Slide from Antonio Criminisi
What is the (complicated) shape of the floor pattern?

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

Slide from Criminisi

Changing camera center
Does it still work?

Recall: same camera center

…Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!
This is how big aerial photographs are made.
Summary: alignment & warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates).
- Perform image warping (forward, inverse).
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.