

### Last time

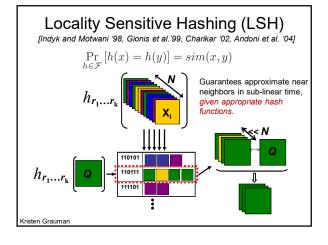
- Instance recognition wrap up:
  - Spatial verification
  - Sky mapping example
  - Query expansion

### **Review** questions

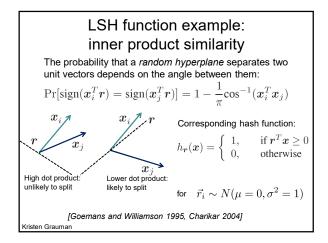
- Does an inverted file index sacrifice accuracy in bag-of-words image retrieval? Why or why not?
- Why does a single SIFT match cast a 4D vote for the Generalized Hough spatial verification model?
- What does a perfect precision recall curve look like?

## Today

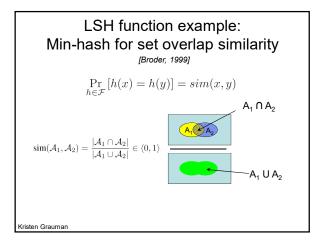
- Discovering visual patterns
   Randomized hashing algorithms
  - Mining large-scale image collections
- Introduction to visual categorization



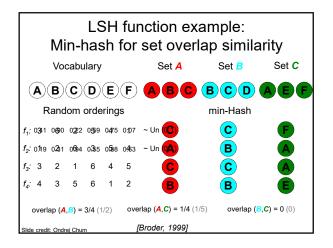




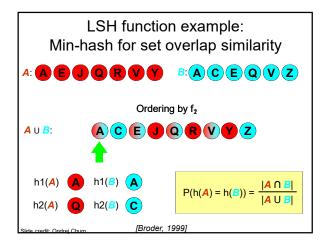














# Multiple hash functions and tables• Generate k such hash functions,<br/>concatenate outputs into hash key:<br/> $P(h_{1,...,k}(x) = h_{1,...,k}(y)) =$ Image: Concentration of the second secon

- independently generated hash tables – Search/rank the union of collisions in
  - each table, orRequire that two examples in at least *T* of the tables to consider them similar.



### Mining for common visual patterns In addition to visual search, want to be able to summarize, mine, and rank the large collection as a whole. • What is common? • What is unusual? • What co-occurs? • Which exemplars are most representative?

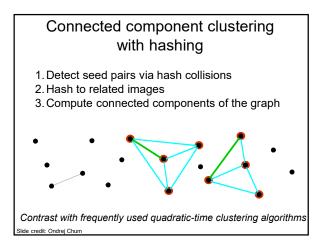
Kristen Grauman

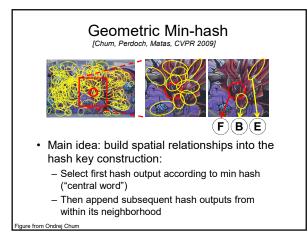
### Mining for common visual patterns

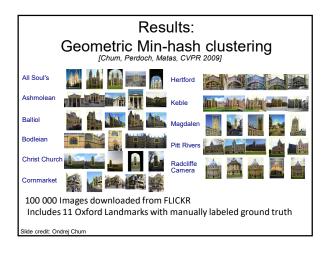
In addition to visual search, want to be able to **summarize, mine, and rank** the large collection as a whole.

We'll look at a few examples:

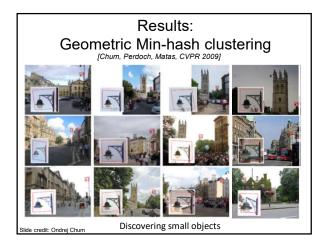
- Connected component clustering via hashing
   [Geometric Min-hash, Chum et al. 2009]
- Visual Rank to choose "image authorities" [Jing and Baluja, 2008]
- Frequent item-set mining with spatial patterns
   [Quack et al., 2007]



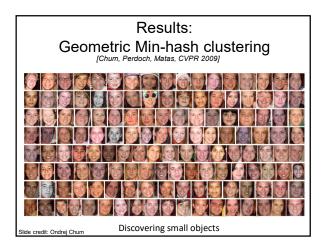


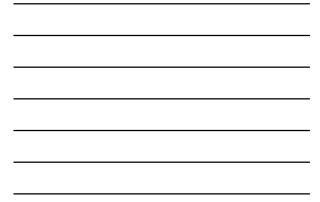












### Mining for common visual patterns

In addition to visual search, want to be able to **summarize**, **mine**, **and rank** the large collection as a whole.

We'll look briefly at a few recent examples:

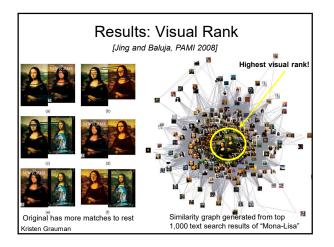
- Connected component clustering via hashing [Geometric Min-hash, Chum et al. 2009]
- Visual Rank to choose "image authorities" [Jing and Baluja, 2008]
- Frequent item-set mining with spatial patterns [Quack et al., 2007]



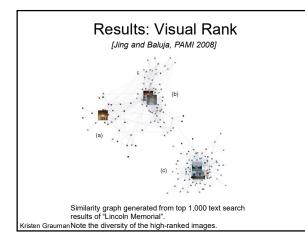
### Visual Rank

[Jing and Baluja, PAMI 2008]

- Compute relative "authority" of an image based on random walk principle.
  - Application of PageRank to visual data
- Main ideas:
  - Graph weights = number of matched local features between two images
  - Exploit text search to narrow scope of each graph
  - Use LSH to make similarity computations efficient







### Mining for common visual patterns

In addition to visual search, want to be able to **summarize, mine, and rank** the large collection as a whole.

We'll look briefly at a few recent examples:

- Connected component clustering via hashing [Geometric Min-hash, Chum et al. 2009]
- Visual Rank to choose "image authorities" [Jing and Baluja, 2008]
- Frequent item-set mining with spatial patterns [Quack et al., 2007]

|         | F                                                                      | requent ite                                                                                   | em-sets                                                                 |                                                                  |
|---------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| Frequ   | uently Bought Together                                                 |                                                                                               |                                                                         |                                                                  |
|         | stomers buy this book with Learn                                       |                                                                                               | ith the OpenCV Library by Gary                                          | Bradski                                                          |
| 346.4   | + 🍉 🗃 Ad                                                               | For Both: \$131.77<br>d both to Cart Add both to Wish Lis<br>vailability and shipping details | t                                                                       |                                                                  |
| Custo   | omers Who Bought This                                                  | Item Also Bought                                                                              |                                                                         |                                                                  |
| a       |                                                                        | Computer                                                                                      |                                                                         |                                                                  |
|         | Learning OpenCV:<br>Computer Vision with the<br>OpenCV by Gary Bradski | Computer Vision: A<br>Modern Approach by David<br>A. Forsyth                                  | Pattern Recognition and<br>Machine Learning by<br>Christopher M. Bishop | Machine Vision, Third<br>Edition: Theory,<br>Algorithms by E. R. |
| Kristor | n Grauman                                                              |                                                                                               |                                                                         |                                                                  |



### Frequent item-set mining for spatial visual patterns [Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

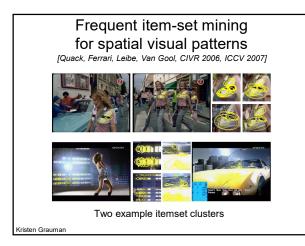
2.5

- What configurations of local features frequently occur in large collection?
- Main idea: Identify *item-sets* (visual word layouts) that often occur in *transactions* (images)
- Efficient algorithms from data mining (e.g., Apriori algorithm, Agrawal 1993)

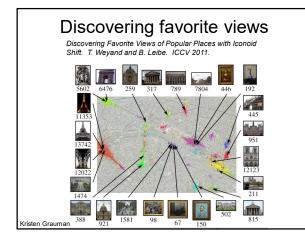




Kristen Grauman



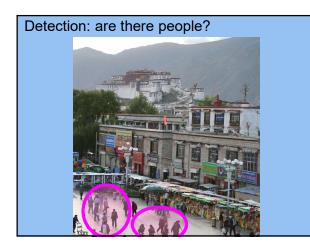




## Today

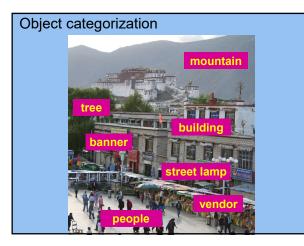
- Discovering visual patterns
  - Randomized hashing algorithms
  - Mining large-scale image collections
- Introduction to visual categorization



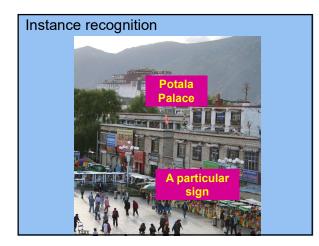




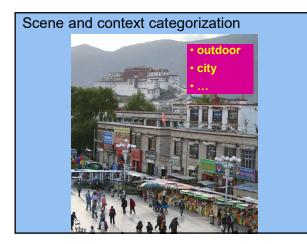


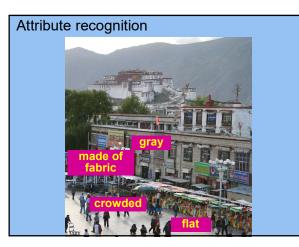


| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |











### Object Categorization

### • Task Description

 "Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label."

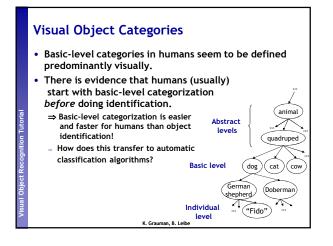
Which categories are feasible visually?

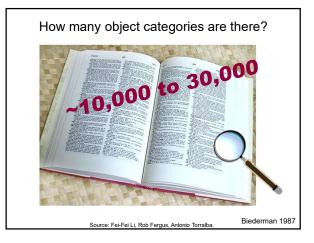


### Visual Object Categories

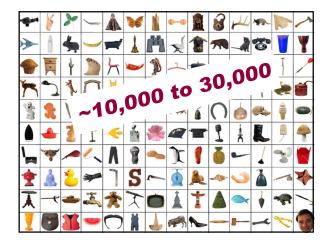
- Basic Level Categories in human categorization
  [Rosch 76, Lakoff 87]
  - > The highest level at which category members have similar perceived shape
  - $\succ\,$  The highest level at which a single mental image reflects the entire category
  - > The level at which human subjects are usually fastest at identifying category members
  - > The first level named and understood by children
  - The highest level at which a person uses similar motor actions for interaction with category members

K. Grauman, B. Leibe













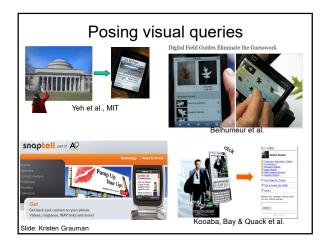


# Why recognition?

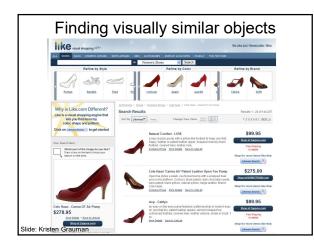
Recognition a fundamental part of perception
e.g., robots, autonomous agents

- Organize and give access to visual content
  - Connect to information
  - · Detect trends and themes





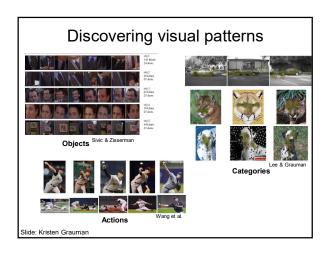




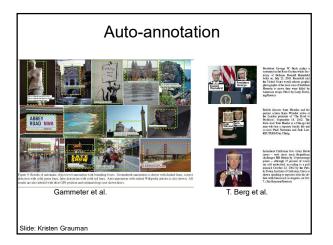








| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |

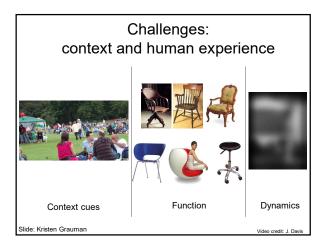












# Challenges: complexity

- · Millions of pixels in an image
- 30,000 human recognizable object categories
- 30+ degrees of freedom in the pose of articulated objects (humans)
- Billions of images online
- 82 years to watch all videos uploaded to YouTube per day!
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991]

Slide: Kristen Grauman

