

Vision talk : Han Joo from CMU

- Tuesday, 11 am in this room
- Social Signal Processing: A Computational Approach to Sensing, Reconstructing and Understanding Social Interaction

Last time

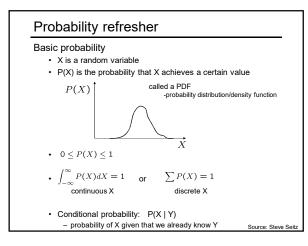
- Discovering visual patterns
 - Randomized hashing algorithmsMining large-scale image collections

Review questions

- What kind of input data is searchable with minhash hashing?
- What kind of input data is searchable with LSH using random projections?
- For Visual "PageRank" what do weights between nodes (images) signify?

Next

- Supervised classification
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study



Supervised classification • Given a collection of *labeled* examples, come up with a function that will predict the labels of new examples. "four" 999999 "nine" 99999 Training examples ? Novel input • How good is some function we come up with to do the classification? • Depends on – Mistakes made

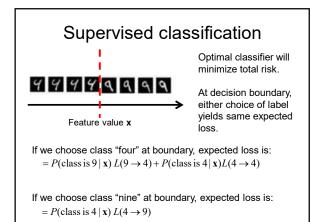
- Cost associated with the mistakes

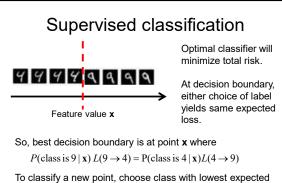
Supervised classification

- Given a collection of *labeled* examples, come up with a function that will predict the labels of new examples.
- Consider the two-class (binary) decision problem
 L(4→9): Loss of classifying a 4 as a 9
 L(9→4): Loss of classifying a 9 as a 4
- Risk of a classifier s is expected loss:

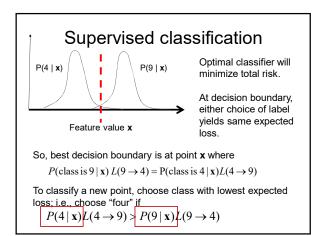
 $R(s) = \Pr(4 \rightarrow 9 \mid \text{using } s)L(4 \rightarrow 9) + \Pr(9 \rightarrow 4 \mid \text{using } s)L(9 \rightarrow 4)$

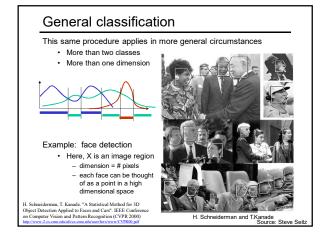
We want to choose a classifier so as to minimize this total risk





loss; i.e., choose "four" if $P(4 | \mathbf{x})L(4 \rightarrow 9) > P(9 | \mathbf{x})L(9 \rightarrow 4)$



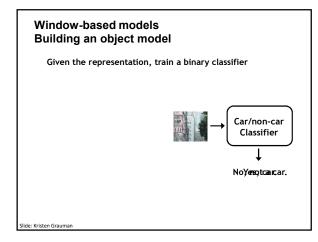


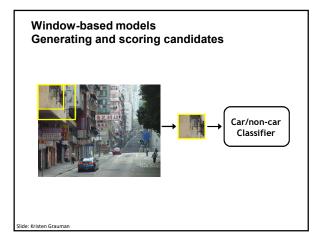
Today

- Supervised classification
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

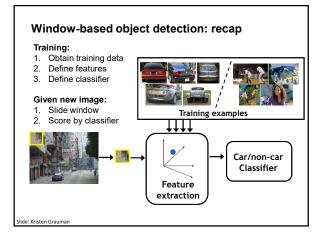
Generic category recognition: basic framework

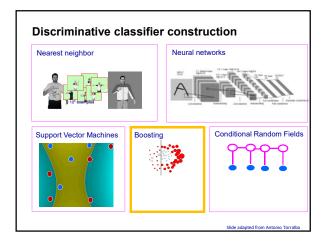
- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- · Generate candidates in new image
- · Score the candidates

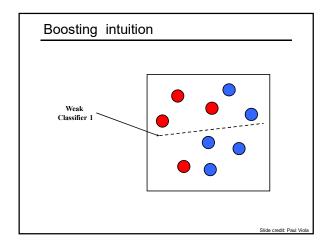


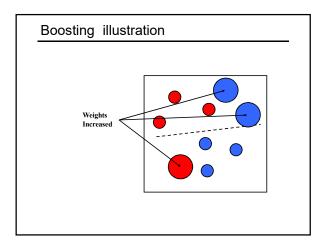


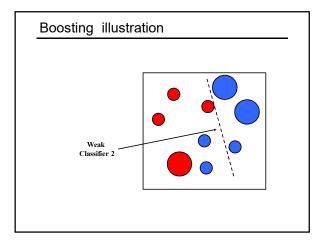


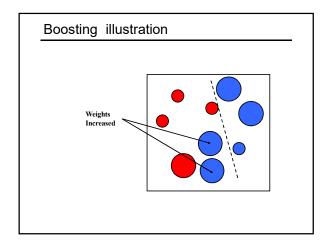


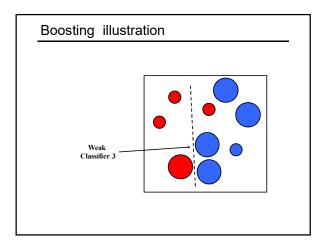


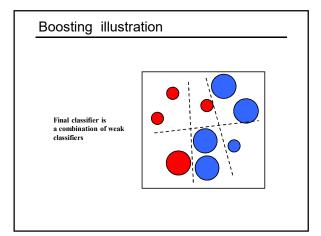












Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Viola-Jones face detector

ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola viola@merl.com Mitsubishi Electric Research Labs 201 Broadway, 8th FL Cambridge, MA 02139 Michael Jones mjones@crl.dec.com Compaq CRL One Cambridge Center Cambridge, MA 02142

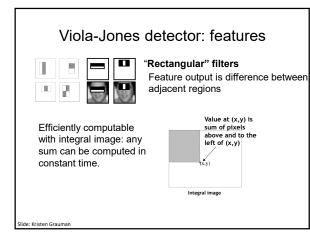
Slide credit: Lana Lazebni

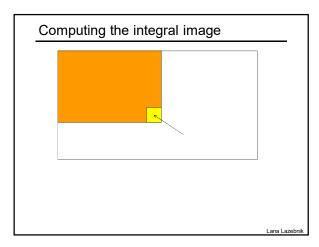
Abstract This paper describes a machine learning approach for vitected at 15 frames per second on a conventional 700 MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in video sequences,

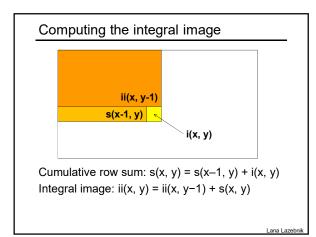
Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable "rectangular" features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly

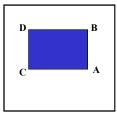






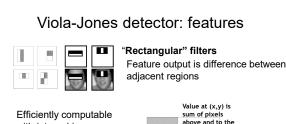
Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as: sum = A - B - C + D



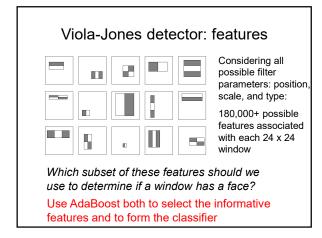
Lana Laze

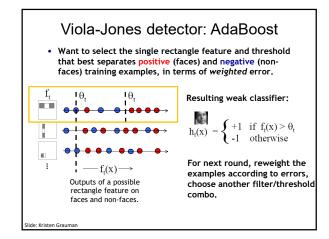
• Only 3 additions are required for any size of rectangle!

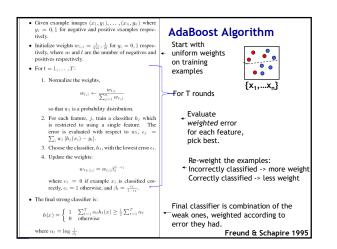


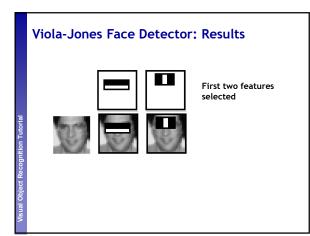
with integral image: any sum can be computed in constant time

Avoid scaling images \rightarrow scale features directly for same cost



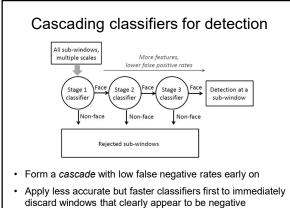






• Even if the filters are fast to compute, each new image has a lot of possible windows to search.

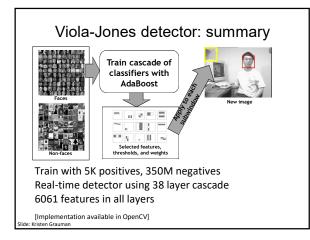
· How to make the detection more efficient?



Slide: Kristen Grauman

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as
 - opposed to minimizing total classification error)
 - Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

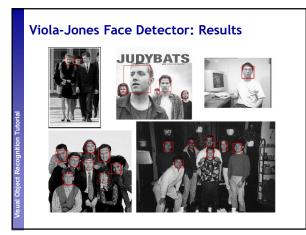


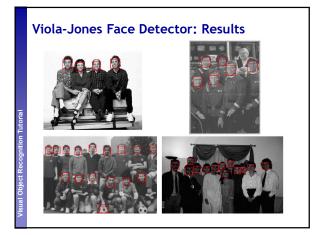
Viola-Jones detector: summary

- A seminal approach to real-time object detection
 15,700 citations and counting
- Training is slow, but detection is very fast
- Key ideas
 - > Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of nonface windows

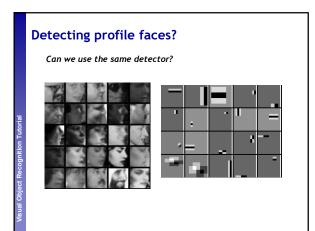
P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.

P. Viola and M. Jones. <u>Robust real-time face detection.</u> IJCV 57(2), 2004.

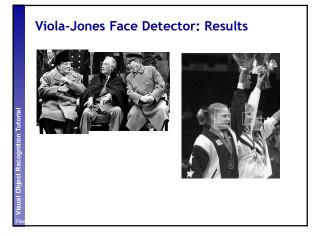


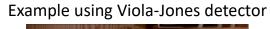






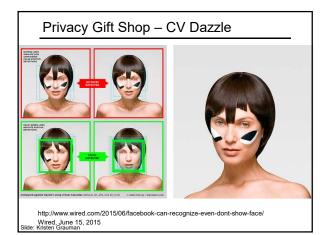
15





Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006. http://www.robots.ox.ac.uk/-vgg/research/nface/index.html

Slide credit: Lana Lazet



Boosting: pros and cons

- · Advantages of boosting
 - Integrates classification with feature selection
 - Complexity of training is linear in the number of training examples
 - Flexibility in the choice of weak learners, boosting scheme
 Testing is fast
 - · Easy to implement

· Disadvantages

- Needs many training examples
- Other discriminative models may outperform in practice (SVMs, CNNs,...)
 especially for many-class problems

Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - > Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Slide: Kristen Grauma

Slide credit: Lana Laz

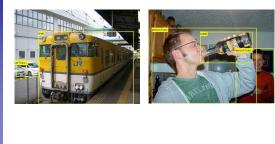
Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Slide: Kristen Grauman

Limitations (continued)

Not all objects are "box" shaped

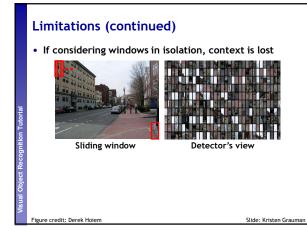


Slide: Kristen Grauman

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

al Object Recognition Tuto



Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Slide: Kristen Grauman

Summary

- · Basic pipeline for window-based detection
 - Model/representation/classifier choice
 - Sliding window and classifier scoring
- · Boosting classifiers: general idea
- Viola-Jones face detector
 - Exemplar of basic paradigm
 - Plus key ideas: rectangular features, Adaboost for feature selection, cascade
- · Pros and cons of window-based detection