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Tues April 23
Kristen Grauman

UT Austin

Deep learning for visual 
recognition

Last time

• Supervised classification continued
• Nearest neighbors 
• Support vector machines 

• HoG pedestrians example
• Kernels
• Multi-class from binary classifiers

Recalll: Examples of kernel functions

 Linear:

 Gaussian RBF:

 Histogram intersection:
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• Kernels go beyond vector space data
• Kernels also exist for “structured” input spaces like 

sets, graphs, trees…
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Discriminative classification with 
sets of features?

• Each instance is unordered set of vectors
• Varying number of vectors per instance

Slide credit: Kristen Grauman

Partially matching sets of features

We introduce an approximate matching kernel that 
makes it practical to compare large sets of features 
based on their partial correspondences.

Optimal match:  O(m3)
Greedy match:   O(m2 log m)
Pyramid match: O(m)

(m=num pts)

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal & 
Varadarajan, …]

Slide credit: Kristen Grauman

Pyramid match: main idea

descriptor 
space

Feature space partitions 
serve to “match” the local 
descriptors within 
successively wider regions.

Slide credit: Kristen Grauman
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Pyramid match: main idea

Histogram intersection 
counts number of possible 
matches at a given 
partitioning.

Slide credit: Kristen Grauman

Pyramid match

• For similarity, weights inversely proportional to bin size
(or may be learned)

• Normalize these kernel values to avoid favoring large sets

[Grauman & Darrell, ICCV 2005]

measures 
difficulty of a 

match at level  

number of newly matched 
pairs at level

Slide credit: Kristen Grauman

Pyramid match

optimal partial 
matching

Optimal match:  O(m3)
Pyramid match: O(mL)

The Pyramid Match Kernel: Efficient 
Learning with Sets of Features. K. 
Grauman and T. Darrell. Journal of 
Machine Learning Research (JMLR), 8 
(Apr): 725--760, 2007.
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BoW Issue:
No spatial layout preserved!

Too much? Too little?

Slide credit: Kristen Grauman

[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.

• Provides some loose (global) spatial layout 
information

Spatial pyramid match

[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.

• Provides some loose (global) spatial layout 
information

Spatial pyramid match

Sum over PMKs 
computed in image 
coordinate space, 
one per word.
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• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

Spatial pyramid match

• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

• Sensitive to global shifts of the view

Confusion table

Spatial pyramid match

Today

• (Deep) Neural networks
• Convolutional neural networks
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Traditional Image Categorization: 
Training phase

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Trained 
Classifier

Slide credit: Jia-Bin Huang

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Trained 
Classifier

Image 
Features

Testing

Test Image

Outdoor

PredictionTrained 
Classifier

Traditional Image Categorization: 
Testing phase

Slide credit: Jia-Bin Huang

Features have been key

SIFT [Lowe IJCV 04] HOG [Dalal and Triggs CVPR 05]

SPM [Lazebnik et al. CVPR 06] Textons

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, …..

and many others:
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• Each layer of hierarchy extracts features from output 
of previous layer

• All the way from pixels  classifier

• Layers have the (nearly) same structure

• Train all layers jointly

Learning a Hierarchy of Feature Extractors 

Layer 1Layer 1 Layer 2Layer 2 Layer 3Layer 3 Simple 
Classifier

Image/Video
Pixels

Image/video Labels

Slide: Rob Fergus

Learning Feature Hierarchy
Goal: Learn useful higher-level features from images

Feature representation

Input data

1st layer  
“Edges”

2nd layer  
“Object parts”

3rd layer  
“Objects”

Pixels

Lee et al., ICML2009;  
CACM 2011

Slide: Rob Fergus

Learning Feature Hierarchy

• Better performance

• Other domains (unclear how to hand engineer):
– Kinect
– Video
– Multi spectral

• Feature computation time
– Dozens of features regularly used [e.g., MKL]
– Getting prohibitive for large datasets (10’s sec /image)

Slide: R. Fergus
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Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier

Slide credit: Jia-Bin Huang

Simple, Complex and Hypercomplex cells

David H. Hubel and Torsten Wiesel

David Hubel's Eye, Brain, and Vision

Suggested a hierarchy of feature detectors 
in the visual cortex, with higher level features 
responding to patterns of activation in lower 
level cells, and propagating activation 
upwards to still higher level cells.

Slide credit: Jia-Bin Huang

Hubel/Wiesel Architecture and Multi-layer Neural Network

Hubel and Weisel’s architecture Multi-layer Neural Network
- A non-linear classifier

Slide credit: Jia-Bin Huang
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Neuron: Linear Perceptron

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Learning w

 Training examples

 Objective: a misclassification loss

 Procedure: 
 Gradient descent / hill climbing

Slide credit: Pieter Abeel and Dan Klein

Hill climbing

 Simple, general idea:
 Start wherever

 Repeat: move to the best 
neighboring state

 If no neighbors better than 
current, quit

 Neighbors = small 
perturbations of w

 What’s bad?
 Complete?

 Optimal?

Slide credit: Pieter Abeel and Dan Klein
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer neural network

Slide credit: Pieter Abeel and Dan Klein
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Neural network properties

 Theorem (Universal function approximators): A 
two-layer network with a sufficient number of 
neurons can approximate any continuous 
function to any desired accuracy

 Practical considerations:
 Can be seen as learning the features

 Large number of neurons
 Danger for overfitting

 Hill-climbing procedure can get stuck in bad local 
optima

Slide credit: Pieter Abeel and Dan KleinApproximation by Superpositions of Sigmoidal Function,1989 

Today

• (Deep) Neural networks
• Convolutional neural networks

Significant recent impact on the field

Big labeled 
datasets

Deep learning

GPU technology

0
5
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1 2 3 4 5 6

ImageNet top-5 error (%)

Slide credit: Dinesh Jayaraman
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Convolutional Neural Networks 
(CNN, ConvNet, DCN)

• CNN = a multi-layer neural network with
– Local connectivity:

• Neurons in a layer are only connected to a small region 
of the layer before it 

– Share weight parameters across spatial positions:
• Learning shift-invariant filter kernels

Image credit: A. Karpathy
Jia-Bin Huang and Derek Hoiem, UIUC

LeNet [LeCun et al. 1998]

Gradient-based learning applied to document 
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Jia-Bin Huang and Derek Hoiem, UIUC

What is a Convolution?
• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
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Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

slide credit: S. Lazebnik

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik
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Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

slide credit: S. Lazebnik

Engineered vs. learned features

ImageImage

Feature extractionFeature extraction

PoolingPooling

ClassifierClassifier

Label

ImageImage

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

DenseDense

DenseDense

DenseDense

Label
Convolutional filters are trained in a 
supervised manner by back-propagating 
classification error

Jia-Bin Huang and Derek Hoiem, UIUC
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SIFT Descriptor

Image 
Pixels Apply

oriented filters

Spatial pool 
(Sum) 

Normalize to unit 
length

Feature 
Vector

Lowe [IJCV 2004]

slide credit: R. Fergus

Spatial Pyramid Matching

SIFT
Features

Filter with 
Visual Words

Multi-scale
spatial pool 
(Sum) 

Max

Classifier

Lazebnik, 
Schmid, 

Ponce 
[CVPR 2006]

slide credit: R. Fergus

Visualizing what was learned

• What do the learned filters look like?

Typical first layer filters
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https://www.wired.com/2012/06/google-x-neural-network/

Application: ImageNet

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk

https://sites.google.com/site/deeplearningcvpr2014 Slide: R. Fergus

AlexNet

• Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Jia-Bin Huang and Derek Hoiem, UIUC
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ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

AlexNet

Industry Deployment

• Used in Facebook, Google, Microsoft
• Image Recognition, Speech Recognition, ….
• Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face  
Verification, CVPR’14

Slide: R. Fergus

Recap
• Neural networks / multi-layer perceptrons

– View of neural networks as learning hierarchy of 
features

• Convolutional neural networks
– Architecture of network accounts for image 

structure
– “End-to-end” recognition from pixels 
– Together with big (labeled) data and lots of 

computation major success on benchmarks, 
image classification and beyond


