

Last time

- Supervised classification continued
 - Nearest neighbors
 - Support vector machines • HoG pedestrians example
 - HoG pedestrians
 Kernels
 - Multi-class from binary classifiers

Recall: Examples of kernel functions• Linear:
$$K(x_i, x_j) = x_i^T x_j$$
• Gaussian RBF: $K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$ • Histogram intersection: $K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$ • Kernels go beyond vector space data• Kernels also exist for "structured" input spaces like

sets, graphs, trees...

computed in image coordinate space, one per word.

[Lazebnik, Schmid & Ponce, CVPR 2006]

Today

- (Deep) Neural networks
- Convolutional neural networks

Neural network properties

- Theorem (Universal function approximators): A two-layer network with a sufficient number of neurons can approximate any continuous function to any desired accuracy
- Practical considerations:
 - Can be seen as learning the features
 - Large number of neurons

s of Sigmoidal Function, 1989

- Danger for overfitting
- Hill-climbing procedure can get stuck in bad local optima

Slide credit: Pieter Abeel and Dan Kle

Today

- (Deep) Neural networks
- Convolutional neural networks

Recap

- Neural networks / multi-layer perceptrons
 - View of neural networks as learning hierarchy of features
- Convolutional neural networks
 - Architecture of network accounts for image structure
 - "End-to-end" recognition from pixels
 - Together with big (labeled) data and lots of computation → major success on benchmarks, image classification and beyond