Local invariant feature detection
Tues Oct 6
Kristen Grauman
UT Austin

Last time
• Fitting an arbitrary shape with “active” deformable contours

Deformable contours
a.k.a. active contours, snakes

Given: initial contour (model) near desired object

Goal: evolve the contour to fit exact object boundary

Main idea: elastic band is iteratively adjusted so as to
• be near image positions with high gradients, and
• satisfy shape “preferences” or contour priors

Figure credit: Yuri Boykov
Deformable contours: intuition

Aspects we need to consider

- Representation of the contours
- Defining the energy functions
 - External
 - Internal
- Minimizing the energy function
 - Extensions:
 - Tracking
 - Interactive segmentation

Interactive forces

How can we implement such an interactive force with deformable contours?
Interactive forces

- An energy function can be altered online based on user input – use the cursor to push or pull the initial snake away from a point.
- Modify external energy term to include:

\[E_{\text{push}} = \sum_{i=0}^{n-1} p_i \left| \mathbf{v}_i - \mathbf{p} \right|^2 \]

Nearby points get pushed hardest

Intelligent scissors

* http://rivit.cs.byu.edu/Eric/Eric.html

Intelligent scissors

* http://rivit.cs.byu.edu/Eric/Eric.html
Intelligent scissors

Another form of interactive segmentation:
Compute optimal paths from every point to the seed based on edge-related costs.

[Figures demonstrating how the live-wire segment adapts and maps to an object (boundary) as the free point moves (a cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (a, b, and c) are shown in green.]

[Video]

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Deformable contours: pros and cons

Pros:
- Useful to track and fit non-rigid shapes
- Contour remains connected
- Possible to fill in “subjective” contours
- Flexibility in how energy function is defined, weighted.

Cons:
- Must have decent initialization near true boundary, may get stuck in local minimum
- Parameters of energy function must be set well based on prior information
Recap: Deformable contours

- Deformable shapes and active contours are useful for
 - Segmentation: fit or “snap” to boundary in image
 - Tracking: previous frame’s estimate serves to initialize the next
- Fitting active contours:
 - Define terms to encourage certain shapes, smoothness, low curvature, pushes/pulls, …
 - Use weights to control relative influence of each component cost
 - Can optimize 2D snakes with Viterbi algorithm.
- Image structure (esp. gradients) can act as attraction force for interactive segmentation methods.

Previously: Features and filters

Transforming and describing images: textures, colors, edges

Previously: Grouping & fitting

Clustering, segmentation, fitting: what parts belong together?
Now: Multiple views
Matching, invariant features, stereo vision, instance recognition

Now: Local features
Multi-view matching relies on local feature correspondences.

Detecting local invariant features
• Detection of interest points
 – Harris corner detection
 – Scale invariant blob detection: LoG
• (Next time: description of local patches)
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently per image.

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

• Must provide some invariance to geometric and photometric differences between the two views.
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

• What points would you choose?

Detecting corners
Detecting corners

Compute “cornerness” response at every pixel.

Detecting corners

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov

Corners as distinctive interest points

We should easily recognize the point by looking through a small window. Shifting a window in any direction should give a large change in intensity.

“flat” region: no change in all directions
“edge”: no change along the edge direction
“corner”: significant change in all directions
Corners as distinctive interest points

\[M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation: \(I_x \leftrightarrow \frac{\partial I}{\partial x} \quad I_y \leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \leftrightarrow \frac{\partial I}{\partial x \partial y} \)

What does this matrix reveal?

First, consider an axis-aligned corner:

This means dominant gradient directions align with \(x \) or \(y \) axis.

Look for locations where both \(\lambda \)'s are large.

If either \(\lambda \) is close to 0, then this is not corner-like.

What if we have a corner that is not aligned with the image axes?
What does this matrix reveal?

Since M is symmetric, we have

$$M = XX^T \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$$

$$MX = \lambda X$$

The eigenvalues of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Corner response function

- "edge": $\lambda_2 >> \lambda_1$
- $\lambda_2 >> \lambda_1$
- "corner": λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$
- "flat" region λ_1 and λ_2 are small;

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

Harris corner detector

1) Compute M matrix for each image window to get their cornerness scores.
2) Find points whose surrounding window gave large corner response (f threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression
Harris Detector: Steps

1. Compute corner response \(f \)

2. Find points with large corner response: \(f > \text{threshold} \)
Harris Detector: Steps

Take only the points of local maxima of \(f \)

Properties of the Harris corner detector

Rotation invariant? Yes

Scale invariant?

\[
M = X \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix} X^T
\]
Properties of the Harris corner detector

<table>
<thead>
<tr>
<th>Rotation invariant?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale invariant?</td>
<td>No</td>
</tr>
</tbody>
</table>

All points will be classified as edges. Corner!

Scale invariant interest points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

Automatic scale selection

Intuition:
- Find scale that gives local maxima of some function f in both position and scale.
What can be the “signature” function?

Blob detection in 2D
Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]

Blob detection in 2D: scale selection
Laplacian-of-Gaussian = “blob” detector

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]
Blob detection in 2D
We define the *characteristic scale* as the scale that produces peak of Laplacian response.

Example

Original image at ¼ the size

Original image at ¼ the size
Scale invariant interest points

Interest points are local maxima in both position and scale.

$L_x(\sigma) = L_y(\sigma) \rightarrow \sigma_3$

\[\Rightarrow \text{List of } (x, y, \sigma) \]

Squared filter response maps
Scale-space blob detector: Example

Summary

- Interest point detection
 - Harris corner detector
 - Laplacian of Gaussian, automatic scale selection