

Last time

- Feature-based alignment
-2D transformations
- Affine fit
- RANSAC

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

RANSAC:General_form

RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Another example

Automatic scanned document rotater using Hough lines and RANSAC

Gen Hough vs RANSAC

GHT

- Single correspondence -> vote for all consistent parameters
- Represents uncertainty in the model parameter space
- Linear complexity in number of correspondences and number of voting cells; beyond 4D vote space impractical
- Can handle high outlier ratio

Today

- Image mosaics
- Fitting a 2D transformation
- Affine, Homography
-2D image warping
- Computing an image mosaic

Obtain a wider angle view by combining multiple images.

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel
\Rightarrow

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

2D transformation models

- Similarity (translation, scale, rotation)

- Affine
- Projective (homography)

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Pinhole camera

- Pinhole camera is a simple model to approximate imaging process, perspective projection.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Mosaics: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Image reprojection

Basic question

- How to relate two images from the same camera center?
- how to map a pixel fromPP1 to PP2

Answer

- Casta ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to
 another.

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines called Homography

$$
\underset{\mathbf{p}}{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]}=\underset{\mathbf{H}}{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
$$

Homography

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of \mathbf{H} are the unknowns...

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns.
Set up a system of linear equations:

$$
A h=b
$$

where vector of unknowns $h=[a, b, c, d, e, f, g, h]^{\top}$
Need at least 8 eqs, but the more the better...
Solve for h. If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

>> help lmdivide

Homography

To apply a given homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathrm{Hp} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

RANSAC for estimating homography

RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography H
3. Compute inliers where $\operatorname{SSD}\left(p_{i}, \boldsymbol{H} p_{j}\right)<\varepsilon$

4. Keep largest set of inliers
5. Re-compute least-squares H estimate on all of the inliers

Today

- Image mosaics

- Fitting a 2D transformation
- Affine, Homography
-2D image warping
- Computing an image mosaic

Image warping

Given a coordinate transform and a source image
$f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y\right)=f(T(x, y))$?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y\right)=T(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y\right)=T(x, y) \text { in the second image }
$$

Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y\right)$ in the first image
Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearestneighbor, bilinear...

Bilinear interpolation

Sampling at $f(x, y)$:

$$
\begin{array}{rll}
f(x, y)=(1-a)(1-b) & f[i, j] \\
& +a(1-b) & f[i+1, j] \\
& +a b & f[i+1, j+1] \\
& +(1-a) b & f[i, j+1]
\end{array}
$$

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

Image warping with homographies

Image rectification

Analysing patterns and shapes

Analysing patterns and shapes

Analysing patterns and shapes

 shape of the floor pattern?

Automatically rectified floor
St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi

Analysing patterns and shapes

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

HP frames commercials

- http://www.youtube.com/watch?v=2RPI5vPEo Qk

Changing camera center

Does it still work?

Recall: same camera center

Can generate synthetic camera view as long as it has the same center of projection.

...Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!
This is how big aerial photographs are made

Boundary extension

- Wide-Angle Memories of CloseUp Scenes, Helene Intraub and Michael Richardson, Journal of Experimental Psychology:
Learning, Memory, and
Cognition, 1989, Vol. 15, No. 2, 179-187

Creating and Exploring a Large Photorealistic Virtual Space

JosefSivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T.
Freeman, Internet Vision Workshop, CVPR 2008.
http://www.youtube.com/watch? $\mathrm{v}=\mathrm{EOrboU10rPo}$

Creating and Exploring a Large
Photorealistic Virtual Space

Current view, and desired view in green

Synthesized view from new camera

Induced camera motion

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics:uses homography and image warping to merge views taken from same center of projection.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
- Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
- 4. Overlay im2 content onto the warped im1 content.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
- Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
- Determine bounds of the new combined image:
- Where will the corners of im1 fall in im2's coordinate frame?
- We will attempt to lookup colors for any of these positions we can get from im1.
- 4. Overlay im2 content onto the warped im1 content.

(Assuming we have solved for the H that maps points from im1 to im2.)

$$
\left[\begin{array}{c}
w x_{2} \\
w y_{2} \\
w
\end{array}\right]=\mathbf{H}\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
- Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
- Determine bounds of the new combined image:
- Where will the corners of im1 fall in im2's coordinate frame?
- We will attempt to lookup colors for any of these positions we can get from im1.
- Inverse warp:
- Compute coordinates in im1's reference frame (via homography) for all points in that range.
- Lookup all colors for all these positions from im1 (interp2)
- 4. Overlay im2 content onto the warped im1 content.

(Assuming we have solved for the H that maps points from im1 to im2.)

Use interp2 to ask for the colors (possibly interpolated) from im1 at all the positions needed in im2's reference frame.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix \mathbf{H}
- Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
- Determine bounds of the new combined image:
- Where will the corners of im1 fall in im2's coordinate frame?
- We will attempt to lookup colors for any of these positions we can get from im1.
- Inverse warp:
- Compute coordinates in im1's reference frame (via homography) for all points in that range.
- Lookup all colors for all these positions from im1 (interp2)
- 4. Overlay im2 content onto the warped im1 content.
- Careful about new bounds of the output image

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

