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Instance recognition

Thurs Oct 29

Last time

• Depth from stereo: main idea is to triangulate from 
corresponding image points.

• Epipolar geometry defined by two cameras

– We’ve assumed known extrinsic parameters relating their poses

• Epipolar constraint limits where points from one view 
will be imaged in the other

– Makes search for correspondences quicker

• To estimate depth

– Limit search by epipolar constraint

– Compute correspondences, incorporate matching preferences 
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Virtual viewpoint video

C. Zitnick et al, High-quality video view interpolation using a layered representation, 
SIGGRAPH 2004.

Virtual viewpoint video

http://research.microsoft.com/IVM/VVV/

C. Larry Zitnick et al, High-quality video view interpolation using a layered 
representation, SIGGRAPH 2004.
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Figure f rom Hartley  & Zisserman

e

e’

Epipole has same coordinates in both images.

Points move along lines radiating from e: “Focus of expansion”

Review questions:

What stereo rig yielded these epipolar lines?

Review questions

• When solving for stereo, when is it necessary 
to break the soft disparity gradient constraint?

• What can cause a disparity value to be 
undefined?

• What parameters relating the two cameras in 
the stereo rig must be known (or inferred) to 
compute depth?
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Today

• Instance recognition

– Indexing local features efficiently

– Spatial verification models

“Groundhog Day” [Rammis, 1993]Visually defined query

“Find this 
clock”

Example I: Visual search in feature films

“Find this 
place”

Recognizing or retrieving

specific objects

Slide credit: J. Sivic
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Find these landmarks ...in these images and 1M more

Slide credit: J. Sivic

Recognizing or retrieving

specific objects

Example II: Search photos on the web for particular places 
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Recall: matching local features

?

To generate candidate matches, find patches that have 

the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or 

closest k, or within a thresholded distance)

Image 1 Image 2

Multi-view matching

vs

…

?

Matching two given 

views for depth 
Search for a matching 

view for recognition
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Indexing local features

…

Indexing local features

• Each patch / region has a descriptor, which is a 

point in some high-dimensional feature space 
(e.g., SIFT)

Descriptor’s 

feature space
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Indexing local features

• When we see close points in feature space, we 

have similar descriptors, which indicates similar 
local content.

Descriptor’s 

feature space

Database 

images

Query 

image

Indexing local features

• With potentially thousands of features per 

image, and hundreds to millions of images to 
search, how to efficiently find those that are 
relevant to a new image?

• Possible solutions:

– Inverted file

– Nearest neighbor data structures

• Kd-trees

• Hashing
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Indexing local features: 

inverted file index
• For text 

documents, an 

efficient way to find 

all pages on which 

a word occurs is to 

use an index…

• We want to find all 

images in which a 

feature occurs.

• To use this idea, 

we’ll need to map 

our features to 

“visual words”.

Visual words

• Map high-dimensional descriptors to tokens/words 

by quantizing the feature space

Descriptor’s 

feature space

• Quantize via 

clustering, let 

cluster centers be 

the prototype 

“words”

• Determine which 

word to assign to 

each new image 

region by finding 

the closest cluster 

center.

Word #2
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Visual words: main idea

• Extract some local features from a number of images …

e.g., SIFT descriptor space: each 
point is 128-dimensional

Slide cr edit: D. Nister , CVPR 2006

Visual words: main idea
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Visual words: main idea

Visual words: main idea
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Each point is a 

local descriptor, 

e.g. SIFT vector. 



10/28/2015

13

Visual words

• Example: each 

group of patches 

belongs to the 

same visual word

Figure from  Sivic & Zisserman, ICCV 2003

Visual words

• Also used for describing 
scenes and object 
categories for the sake of 
indexing or classification.

Sivic & Zisserman 2003; 

Csurka, Bray, Dance, & Fan 

2004; many others.
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• First explored for texture and 
material representations

• Texton = cluster center of 
filter responses over 
collection of images

• Describe textures and 
materials based on 
distribution of prototypical 
texture elements.

Visual words and textons

Leung & Malik 1999; Varma & 

Zisserman, 2002

Recall: Texture representation example

statistics to 
summarize patterns 

in small windows 

mean 
d/dx
value 

mean 
d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Dimension 1 (mean d/dx value)

D
im

e
n

s
io

n
 2

 (
m

e
a

n
 d

/d
y
 v

a
lu

e
)

Windows with 
small gradient in 
both directions

Windows with 
primarily vertical 
edges

Windows with 
primarily horizontal 
edges

Both
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Visual vocabulary formation

Issues:

• Sampling strategy: where to extract features?

• Clustering / quantization algorithm

• Unsupervised vs. supervised

• What corpus provides features (universal vocabulary?)

• Vocabulary size, number of words

Inverted file index

• Database images are loaded into the index mapping 

words to image numbers
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• New query image is mapped to indices of database 

images that share a word.

Inverted file index

When will this give us a 

significant gain in efficiency? 

Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 

agreement?

• How to score the retrieval results?

Kristen Grauman
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Analogy to documents

Of  all the sensory  impressions proceeding to 

the brain, the v isual experiences are the 

dominant ones. Our perception of  the world 

around us is based essentially  on the 

messages that reach the brain f rom our ey es. 

For a long time it was thought that the retinal 

image was transmitted point by  point to v isual 

centers in the brain; the cerebral cortex was a 

mov ie screen, so to speak, upon which the 

image in the ey e was projected. Through the 

discov eries of  Hubel and Wiesel we now 

know that behind the origin of  the v isual 

perception in the brain there is a considerably  

more complicated course of  ev ents. By 

f ollowing the v isual impulses along their path 

to the v arious cell lay ers of  the optical cortex, 

Hubel and Wiesel hav e been able to 

demonstrate that the message about the 

image falling on the retina undergoes a step-

wise analysis in a system of nerve cells 

stored in columns. In this system each cell 

has its specific function and is responsible for 

a specific detail in the pattern of the retinal 

image.

sensory, brain, 

visual, perception, 

retinal, cerebral cortex,

eye, cell, optical 

nerve, image

Hubel, Wiesel

China is f orecasting a trade surplus of  $90bn 

(£51bn) to $100bn this y ear, a threef old 

increase on 2004's $32bn. The Commerce 

Ministry  said the surplus would be created by  

a predicted 30% jump in exports to $750bn, 

compared with a 18% rise in imports to 

$660bn. The f igures are likely  to f urther 

annoy  the US, which has long argued that 

China's exports are unf airly  helped by  a 

deliberately  underv alued y uan.  Beijing 

agrees the surplus is too high, but say s the 

y uan is only  one f actor. Bank of  China 

gov ernor Zhou Xiaochuan said the country  

also needed to do more to boost domestic 

demand so more goods stay ed within the 

country. China increased the v alue of  the 

y uan against the dollar by  2.1% in July  and 

permitted it to trade within a narrow band, but 

the US wants the y uan to be allowed to trade 

f reely. Howev er, Beijing has made it clear that 

it will take its time and tread caref ully  bef ore 

allowing the y uan to rise f urther in v alue.

China, trade, 

surplus, commerce, 

exports, imports, US, 

yuan, bank, domestic, 

foreign, increase, 

trade, value

ICCV 2005 short course, L. Fei-Fei

Object Bag of ‘words’

ICCV 2005 short course, L. Fei-Fei
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Bags of visual words

• Summarize entire image 

based on its distribution 
(histogram) of word 
occurrences.

• Analogous to bag of words 

representation commonly 
used for documents.
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Comparing bags of words

• Rank frames by normalized scalar product between their 

(possibly weighted) occurrence counts---nearest

neighbor search for similar images.

[5  1   1    0][1  8   1    4]          

jd


q


𝑠𝑖𝑚 𝑑𝑗 ,𝑞 =
𝑑𝑗 ,𝑞

𝑑𝑗 𝑞

=
 𝑖=1
𝑉 𝑑𝑗 𝑖 ∗ 𝑞(𝑖)

 𝑖=1
𝑉 𝑑𝑗(𝑖)

2 ∗  𝑖=1
𝑉 𝑞(𝑖)2

for vocabulary of V words

tf-idf weighting

• Term frequency – inverse document frequency

• Describe frame by frequency of each word within it, 

downweight words that appear often in the database

• (Standard weighting for text retrieval)

Total number of 
documents in 
database

Number of documents 
word i occurs in, in 
whole database

Number of 
occurrences of word 
i in document d

Number of words in 
document d
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Inverted file index and

bags of words similarity

w91

1. Extract words in query

2. Inverted file index to find 

relevant frames

3. Compare word counts
Kristen Grauman

Slide f rom Andrew Zisserman

Siv ic & Zisserman, ICCV 2003

Bags of words for content-based 

image retrieval
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Slide f rom Andrew Zisserman

Siv ic & Zisserman, ICCV 2003
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K. Grauman, B. Leibe

Video Google System

1. Collect all words within 

query region

2. Inverted file index to find 

relevant frames

3. Compare word counts

4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html

46
K. Grauman, B. Leibe

Query 

region

R
e
trie

v
e
d
 fra

m
e
s
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K. Grauman, B. Leibe

Vocabulary Trees: hierarchical clustering 

for large vocabularies

• Tree construction:

Slide cr edit: David Nister

[Nister & Stewenius, CVPR’06]
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Vocabulary Tree

• Training: Filling the tree

Slide cr edit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary Tree

• Training: Filling the tree

Slide cr edit: David Nister

[Nister & Stewenius, CVPR’06]
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50

K. Grauman, B. Leibe

Vocabulary Tree

• Training: Filling the tree

Slide cr edit: David Nister

[Nister & Stewenius, CVPR’06]
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What is the computational advantage of the 

hierarchical representation bag of words, vs. 
a flat vocabulary?

Larger vocabularies 

can be 
advantageous…

But what happens if it 
is too large?

Vocabulary size

Results for recognition task 

with 6347 images 

Nister & Stewenius, CVPR 2006Influence on performance, sparsity?

Branching 

factors
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Bags of words: pros and cons

+  flexible to geometry / deformations / viewpoint

+  compact summary of image content

+  provides vector representation for sets

+ very good results in practice

- basic model ignores geometry – must verify 
afterwards, or encode via features

- background and foreground mixed when bag 
covers whole image

- optimal vocabulary formation remains unclear

Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 

agreement?

• How to score the retrieval results?

Kristen Grauman
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Which matches better?

Derek Hoiem

Spatial Verification

Both image pairs have many visual words in common.

Sl ide credit: Ondrej Chum

Query Query

DB image with high BoW
s imilarity DB image with high BoW

s imilarity
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Only some of the matches are mutually consistent

Sl ide credit: Ondrej Chum

Spatial Verification

Query Query

DB image with high BoW
s imilarity DB image with high BoW

similarity

Spatial Verification: two basic strategies

• RANSAC

– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible 

transformations 

• e.g., “success” if find a transformation with > N inlier 

correspondences

• Generalized Hough Transform

– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes
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RANSAC verification

Recall: Fitting an affine transformation
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planar objects and 

roughly orthographic 

cameras.
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RANSAC verification

Spatial Verification: two basic strategies

• RANSAC

– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible 

transformations 

• e.g., “success” if find a transformation with > N inlier 

correspondences

• Generalized Hough Transform

– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes
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Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local 

features, then each feature match gives an alignment 

hypothesis (for scale, translation, and orientation of 

model in image).

Model Novel image

Adapted f rom Lana Lazebnik

Voting: Generalized Hough Transform

• A hypothesis generated by a single match may be 

unreliable,

• So let each match vote for a hypothesis in Hough space

Model Novel image
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Gen Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 

normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 

and a model feature vote in a 4D Hough space

• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 

geometric verification 

• Estimate least squares affine transformation 

• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Slide credit: Lana Lazebnik

Objects recognized, Recognition in 

spite of occlusion

Example result

Background subtract 

for model boundaries

[Lowe]

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Recall: difficulties of voting

• Noise/clutter can lead to as many votes as 

true target

• Bin size for the accumulator array must be 

chosen carefully

• In practice, good idea to make broad bins and 
spread votes to nearby bins, since verification 
stage can prune bad vote peaks.
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B. Leibe

Example Applications

Mobile tourist guide
• Self-localization

• Object/building recognition

• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
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Application: Large-Scale Retrieval

[Philbin CVPR’07]

Query Results from 5k Flickr images (demo available for 100k set)
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Web Demo: Movie Poster Recognition

http://www.kooaba.com/en/products_engine.html#

50’000 movie
posters indexed

Query-by-image
from mobile phone
available in Switzer-

land
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Instance recognition:

remaining issues

• How to summarize the content of an entire 

image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 

agreement?

• How to score the retrieval results?

Kristen Grauman

Scoring retrieval quality

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

Query
Database s ize: 10 images
Relevant (total): 5 images 

Results (ordered):

precision = #relevant / #returned
reca ll = #relevant / #total relevant

Sl ide credit: Ondrej Chum
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Recognition via alignment

Pros: 

• Effective when we are able to find reliable features 

within clutter

• Great results for matching specific instances

Cons:

• Scaling with number of models

• Spatial verification as post-processing – not 

seamless, expensive for large-scale problems

• Not suited for category recognition.

China is f orecasting a trade surplus of  $90bn 

(£51bn) to $100bn this y ear, a threef old 

increase on 2004's $32bn. The Commerce 

Ministry  said the surplus would be created by  

a predicted 30% jump in exports to $750bn, 

compared with a 18% rise in imports to 

$660bn. The f igures are likely  to f urther 

annoy  the US, which has long argued that 

China's exports are unf airly  helped by  a 

deliberately  underv alued y uan.  Beijing 

agrees the surplus is too high, but say s the 

y uan is only  one f actor. Bank of  China 

gov ernor Zhou Xiaochuan said the country  

also needed to do more to boost domestic 

demand so more goods stay ed within the 

country. China increased the v alue of  the 

y uan against the dollar by  2.1% in July  and 

permitted it to trade within a narrow band, but 

the US wants the y uan to be allowed to trade 

f reely. Howev er, Beijing has made it clear that 

it will take its time and tread caref ully  bef ore 

allowing the y uan to rise f urther in v alue.

China, trade, 

surplus, commerce, 

exports, imports, US, 

yuan, bank, domestic, 

foreign, increase, 

trade, value

What else can we borrow from 

text retrieval?
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Query expansion

Query: golf green

Results:

- How can the grass on the greens at a golf course be so perfect?
- For example, a skil led golfer expects to reach the green on a par-four hole in ...
- Manufactures and sells synthetic golf putting greens and mats.

Irrelevant result can cause a ̀ topic drift’: 

- Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles, 
2.0 GTi, 2 Registered Keepers, HPI Checked, Air-Conditioning, Front and Rear 
Parking Sensors, ABS, Alarm, Alloy 

Sl ide credit: Ondrej Chum

Query Expansion

…

Query image

Results

New query

Spatial verification

New results

Chum, Phi lbin, Sivic, Isard, Zisserman: Total Recall…, ICCV 2007
Sl ide credit: Ondrej Chum
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Query Expansion Step by Step

Query Image Retrieved image Originally not retrieved

Sl ide credit: Ondrej Chum

Query Expansion Step by Step

Sl ide credit: Ondrej Chum
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Query Expansion Step by Step

Sl ide credit: Ondrej Chum

Query Expansion Results

Query
image

Expanded results (better)

Original results (good)

Sl ide credit: Ondrej Chum



10/28/2015

39

Summary

• Matching local invariant features

– Useful not only to provide matches for multi-view 
geometry, but also to find objects and scenes.

• Bag of words representation: quantize feature space to 
make discrete set of visual words

– Summarize image by distribution of words
– Index individual words

• Inverted index: pre-compute index to enable faster 
search at query time

• Recognition of instances via alignment: matching 

local features followed by spatial verification

– Robust fitting : RANSAC, GHT

Kristen Grauman


