

Object detection as supervised classification

Tues Nov 10

Kristen Grauman UT Austin

Today

- Supervised classification
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

Generic category recognition: basic framework

- Build/train object model
 - (Choose a representation)
 - Learn or fit parameters of model / classifier
- · Generate candidates in new image
- Score the candidates

Supervised classification

• Given a collection of *labeled* examples, come up with a function that will predict the labels of new examples.

Training examples

Novel input

- How good is some function we come up with to do the classification?
- Depends on
 - Mistakes made
 - Cost associated with the mistakes

Supervised classification

- Given a collection of labeled examples, come up with a function that will predict the labels of new examples.
- Consider the two-class (binary) decision problem
 - L(4→9): Loss of classifying a 4 as a 9
 - L(9→4): Loss of classifying a 9 as a 4
- Risk of a classifier s is expected loss:

$$R(s) = \Pr(4 \rightarrow 9 \mid \text{using } s)L(4 \rightarrow 9) + \Pr(9 \rightarrow 4 \mid \text{using } s)L(9 \rightarrow 4)$$

We want to choose a classifier so as to minimize this total risk

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

If we choose class "four" at boundary, expected loss is: = $P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) + P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 4)$

If we choose class "nine" at boundary, expected loss is: = $P(\text{class is } 4 | \mathbf{x}) L(4 \rightarrow 9)$

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

So, best decision boundary is at point \mathbf{x} where

$$P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) = P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$$

To classify a new point, choose class with lowest expected loss; i.e., choose "four" if

$$P(4 \mid \mathbf{x})L(4 \rightarrow 9) > P(9 \mid \mathbf{x})L(9 \rightarrow 4)$$

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

So, best decision boundary is at point \mathbf{x} where

$$P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) = P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$$

To classify a new point, choose class with lowest expected loss; i.e., choose "four" if

$$P(4 \mid \mathbf{x})L(4 \rightarrow 9) > P(9 \mid \mathbf{x})L(9 \rightarrow 4)$$

Probability

Basic probability

- · X is a random variable
- P(X) is the probability that X achieves a certain value

- $0 \le P(X) \le 1$
- Conditional probability: P(X | Y)
 - probability of X given that we already know Y

Source: Steve Seitz

Example: learning skin colors

 We can represent a class-conditional density using a histogram (a "non-parametric" distribution)

Now we get a new image, and want to label each pixel as skin or non-skin.

What's the probability we care about to do skin detection?

Bayes rule

$$P(skin \mid x) = \frac{P(x \mid skin)P(skin)}{P(x)}$$

$$P(skin | x) \alpha P(x | skin) P(skin)$$

Where does the prior come from?

Why use a prior?

Example: classifying skin pixels

Now for every pixel in a new image, we can estimate probability that it is generated by skin.

Brighter pixels → higher probability of being skin

Classify pixels based on these probabilities

- if $p(\text{skin}|\boldsymbol{x}) > \theta$, classify as skin
- if $p(\text{skin}|\boldsymbol{x}) < \theta$, classify as not skin

Example: classifying skin pixels

Figure 6: A video image and its flesh probability image

Figure 7: Orientation of the flesh probability distribution marked on the source video image

Gary Bradski, 1998

Example: classifying skin pixels

Figure 13: CAMSHIFT-based face tracker used to over a 3D graphic's model of Hawaii

Figure 12: CAMSHIFT-based face tracker used to play Quake 2 hands free by inserting control variables into the mouse queue

Using skin color-based face detection and pose estimation as a video-based interface

Gary Bradski, 1998

Generative vs. Discriminative Models

 Generative approach: separately model class-conditional densities and priors

$$p(\mathbf{x}|\mathcal{C}_k), \qquad p(\mathcal{C}_k)$$

then evaluate posterior probabilities using Bayes' theorem

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$

 Discriminative approach: directly model posterior probabilities

$$p(C_k|\mathbf{x})$$

In both cases usually work in a feature space

Slide from Christopher M. Bishop, MSR Cambridge

General classification

This same procedure applies in more general circumstances

- · More than two classes
- · More than one dimension

Example: face detection

- Here, X is an image region
 - dimension = # pixels
 - each face can be thought of as a point in a high dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D Object Detection Applied to Faces and Cars". IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000) http://www-2.cs.cmu.edu/afs/cs.cmu.edu/asr-mws/www/CVPR010.pdf

H. Schneiderman and T.Kanade Source: Steve Seitz

Today

- Supervised classification
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- · Generate candidates in new image
- · Score the candidates

Window-based models Building an object model

Given the representation, train a binary classifier

No Yerso t cancar.

Window-based models Generating and scoring candidates Car/non-car Classifier

Boosting illustration

Final classifier is a combination of weak classifiers

Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Slide credit: Lana Lazebnik

Viola-Jones face detector

ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola viola⊚merl.com Mitsubishi Electric Research Labs 201 Broadway, 8th FL Cambridge, MA 02139 Michael Jones
mjones@crl.dec.com
Compaq CRL
One Cambridge Center
Cambridge, MA 02142

Abstract

This paper describes a machine learning approach for vi-

tected at 15 frames per second on a conventional 700 MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in video sequences,

Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable "rectangular" features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly

Computing the integral image

Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

Lana Lazebnik

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$

 Only 3 additions are required for any size of rectangle!

Lana Lazebnik

Viola-Jones detector: features

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \rightarrow scale features directly for same cost

Viola-Jones detector: features

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier

Viola-Jones detector: AdaBoost

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

Outputs of a possible rectangle feature on faces and non-faces.

Resulting weak classifier:

For next round, reweight the examples according to errors, choose another filter/threshold combo.

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \text{ for } y_i = 0, 1 \text{ respectively, where } m \text{ and } l \text{ are the number of negatives and positives respectively.}
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{e_t}{1 - e_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples

{x₁,....

For T rounds

- Evaluate
 weighted error
 for each feature,
 pick best.
- Re-weight the examples:
- Incorrectly classified -> more weight
 Correctly classified -> less weight

Final classifier is combination of the weak ones, weighted according to error they had.

Freund & Schapire 1995

Viola-Jones Face Detector: Results First two features selected

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- How to make the detection more efficient?

Cascading classifiers for detection

- Form a cascade with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - · Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

Viola-Jones detector: summary

Train with 5K positives, 350M negatives Real-time detector using 38 layer cascade 6061 features in all layers

[Implementation a vailable in OpenCV]

Viola-Jones detector: summary

- A seminal approach to real-time object detection
- · Training is slow, but detection is very fast
- Key ideas
 - > Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of nonface windows

P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u>
CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection, UCV 57(2), 2004.

Viola-Jones Face Detector: Results

Visual Object Rec

Detecting profile faces?

Can we use the same detector?

Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results

Visual Object Recognitie

Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMV C 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Consumer application: iPhoto 2009

Things iPhoto thinks are faces

Slide credit: Lana Lazebni

Consumer application: iPhoto 2009

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos faces recognizes cats

Slide credit: Lana Lazebnik

http://www.wired.com/2015/06/facebook-can-recognize-even-dont-show-face/Wired, June 15, 2015

Privacy Visor

http://www.3ders.org/articles/20150812-japan-3d-printed-privacy-visors-will-block-facial-recognition-software.html

Boosting: pros and cons

- · Advantages of boosting
 - · Integrates classification with feature selection
 - Complexity of training is linear in the number of training examples
 - · Flexibility in the choice of weak learners, boosting scheme
 - · Testing is fast
 - · Easy to implement
- Disadvantages
 - · Needs many training examples
 - Other discriminative models may outperform in practice (SVMs, CNNs,...)
 - especially for many-class problems

Slide credit: Lana Lazebnik

Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - > Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Isual Object Recognition Iutorial

Window-based detection: Limitations

- · High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - > If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

/isual Object Recognition Tuto

Limitations (continued)

• Not all objects are "box" shaped

Visual Object Recognition Tutorial

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Limitations (continued)

• If considering windows in isolation, context is lost

Detector's view

Figure credit: Der ek Hoiem

/isual Object Recognition Tutorial

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Summary

- · Basic pipeline for window-based detection
 - Model/representation/classifier choice
 - Sliding window and classifier scoring
- Boosting classifiers: general idea
- Viola-Jones face detector
 - Exemplar of basic paradigm
 - Plus key ideas: rectangular features, Adaboost for feature selection, cascade
- Pros and cons of window-based detection