

Today

- HMM examples
- Support vector machines (SVM)
 - Basic algorithm
 - Kernels
 - Structured input spaces: Pyramid match kernels
 - Multi-class
 - HOG + SVM for person detection
 - Visualizing a feature: Hoggles
- Evaluating an object detector

Window-based models: Three case studies

Boosting + face detection

Viola & Jones

NN + scene Gist classification

e.g., Hays & Efros

SVM + person detection

e.g., Dalal & Triggs

Questions

• What if the data is not linearly separable?

Lana Lazebnik

- HMM examples
- Support vector machines (SVM)
 - Basic algorithm
 - Kernels
 - Structured input spaces: Pyramid match kernels
 - Multi-class
 - HOG + SVM for person detection
 - Visualizing a feature: Hoggles
- Evaluating an object detector

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

"Kernel trick": Example

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$ Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$, $= 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$ $= [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^T$ $[1 \ x_{j1}^2 \ \sqrt{2} \ x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}]$ $= \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$, where $\varphi(\mathbf{x}) = [1 \ x_1^2 \ \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$

SVMs for recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Use this "kernel matrix" to solve for SVM support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Multi-class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers

<u>One vs. all</u>

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - · Kernel-based framework is very powerful, flexible
 - · Often a sparse set of support vectors compact at test time
 - Work very well in practice, even with small training sample sizes
- Cons
 - No "direct" multi-class SVM, must combine two-class SVMs
 - Can be tricky to select best kernel function for a problem
 - · Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Today

- HMM examples
- Support vector machines (SVM)
 - Basic algorithm
 - Kernels
 - Structured input spaces: Pyramid match kernels
 - Multi-class
 - HOG + SVM for person detection
 - Visualizing a feature: Hoggles
- Evaluating an object detector

Person detection with HoG's & linear SVM's

• Map each grid cell in the input window to a histogram counting the gradients per orientation.

• Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Dalal & Triggs, CVPR 2005

Recall: Examples of kernel functions

• Linear: $K(x_i, x_j) = x_i^T x_j$

• Gaussian RBF:
$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

Histogram intersection:

$$K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$$

- · Kernels go beyond vector space data
- Kernels also exist for "structured" input spaces like sets, graphs, trees...

Summary: This week

- Object recognition as classification task
 - Boosting (face detection ex)
 - Support vector machines and HOG (person detection ex)
 - Pyramid match kernels
 - Hoggles visualization for understanding classifier mistakes
 - Nearest neighbors and global descriptors (scene rec ex)
- Sliding window search paradigm
 - Pros and cons
 - Speed up with attentional cascade
 - Object proposals as alternative to exhaustive search
- HMM examples
- Evaluation
 - Detectors: Intersection over union, precision recall
 - Classifiers: Confusion matrix