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Support vector
machines and kernels
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Last time

* Sliding window object detection pros and cons
* Attentional cascade
* Object proposals for detection

* Nearest neighbor classification
* Scene recognition example with global descriptors
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Today

* HMM examples

* Supportvector machines (SVM)
* Basicalgorithm
* Kernels
e Structured inputspaces:Pyramid match kernels
* Multi-class

* HOG + SVM for person detection
* Visualizinga feature: Hoggles

* Evaluating an object detector

Window-based models:
Three case studies

sm B¢ |

Boosting + face NN + scene Gist SVM + person
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Slide credit: Kristen Grauman
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Recall: Nearest Neighbor
classification

» Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

Novel test example

Closestto a
positive example
from the training
set, so classify it
> as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data

6+ million geotagged photos
by 109,788 photographers

Annotated byFlickrusers

Slide credit: James Hays




Im2gps: Scene Matches

Croatia

L

europe Barcelona

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]  Slide credit: James Hays

BMe credit: James Hays

11/18/2015



The Importance of Data

16

= First Nearest Neighbor Scene Match
= = = Chance- Random Scenes

141

12
10

Percentage of Geolocations within 200km

8
6
4
2
0 | ! ! ! ! ! !
0.09 0.38 1.54 6.16 24.6 98.5 394 1,576 6,304

Database size (thousands of images, log scale)

[Hays and Efros. im2gps: Estimating GeographicInformation froma Single Image.CVPR 2008.]

Slide credit: James Hays

HMM example:
Photo Geo-location

Where was this picture taken?

Slide credit: Kristen Grauman
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Example: Photo Geo-location

Where was this picture taken?

L

Slide credit: Kristen Grauman

Example: Photo Geo-location

Where was this picture taken?

Slide credit: Kristen Grauman
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Example: Photo Geo-location

Where was each picture in this sequence
taken?

Slide credit: Kristen Grauman

Idea: Exploit the beaten path

» Learn dynamics model from “training”
tourist photos

» Exploit timestamps and sequences for
novel “test” photos

[Chen & Grauman CVPR 2011] Slide credit: Kristen Grauman
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Idea: Exploit the beaten path

Burst3

Burst1

A3
12:41PM 10:41 AM 10:34 AM 10:15 AM 9:11 AM 8:50 AM

[Chen & Grauman CVPR 2011] Slide credit: Kristen Grauman

Hidden Markov Model

P(Observation | State ) Observation

P(State )

P(S2|S1

P(53|53)

P(51|53)

Slide credit: Kristen Grauman
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Discovering a city's locations

Define states with data-driven approach:

New York

mean shiftclustering onthe GPS coordinates ofthe trainingimages

Latitude

e AR .»?'"
"'Q 0—) : o4
¥eas. =

Central Park

Financial District

Brooklyn
Tass

Loﬁgitude

Observation model

P(Observation | State) = P( E' * | Liberty Island)

P(L2]|L2)

P(L3|L3)

P(L1]L3)

Slide credit: Kristen Grauman
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Observation model

Slide credit: Kristen Grauman

Location estimation accuracy

NN Img-HMM | Burst Only [ Burst-HMM (Oursy
Avg/seq [ 0.1502 0.1608 0.1764 |/ 0.2036
Overall || 0.1592 0.1660 0.2617 0.2782
(a) Rome dataset
NN Img-HMM | Burst Only | Burst-HMM (Ours)
Avg/seq | 0.2323 0.2124 0.2099 0.3021
Overall 0.2302 0.2070 0.2055 \ 0.3143 /

\/ (b) New York City dataset

Slide credit: Kristen Grauman

11/18/2015
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Qualitative Result — New York

Image 1

Image 2

Base: V, Ours: V

Base: V, Ours: V

Image 8

Base: v, Ours: V. Base: x, Ours:

“base:v oursiv |5

Image 13 Image 14

Base: x, Ours: V

Base: x, Ours: ¥

Base: v, Ours: V[

Image 15

image 16 image 17

Base: ¥, Ours: V. Base: ¥, Ours: V.

Image 1

Image 2 image 3

Image 6 Image 7

Slide credit: Kristen Grauman

Discovering travel guides’ beaten paths

Routes from travel guide book for New York vs.
Random walks inlearned HMM

7 e+ Metropolitan: - E ae
VA Museum of Art \
S
o) USS Intrepid 4 Eamral Park Zoo|

‘Museum

E}Emplre State Mildlng

TImeSquar | Rockfeller rfenter Y

4
7 v

o 4 [iffa ny&Co : 4
/s skt Fifth Avenua Iobmlngdalg
4 Waldorf -~

:'(
N

E mplresutgﬁu i

Esulenlshndferry 2
Esnmeofubcnv .
Rand. Walk | Rand. Walk(TS) | Guidebook
Route Prob. | 6.3-10— 12 421011 2.0.-10~%

Slide credit: Kristen Grauman

11/18/2015
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Video textures

* Schodl, Szeliski, Salesin, Essa; Siggraph 2000.
* http://www.cc.gatech.edu/cpl/projects/videotexture/

Today

* HMM examples

* Support vector machines (SVM)
— Basic algorithm
— Kernels
* Structured input spaces: Pyramid match kernels
— Multi-class
— HOG + SVM for person detection

* Visualizing a feature: Hoggles

* Evaluating an object detector

11/18/2015
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Window-based models:
Three case studies

=|[**]
=

Boosting + face NN + scene Gist SVM + person
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Slide credit: Kristen Grauman

Linear classifiers

11/18/2015
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Linear classifiers

* Find linear functionto separate positive and
negative examples

® X; positive:  X,-w+b>0
X; negative :  X,-w+b<0

Which line
is best?

* Discriminative
classifierbased on
optimal separating
line (for 2d case)

* Maximize the margin
between the positive
and negative training
examples

11/18/2015
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Support vector machines

*  Want line that maximizes the margin.

"6\\ o <\ X; positive (y; =1):  x,-w+b>1
X; negative (y; =-1): X,-w+b<-1

° For support, vectors, X;-W+b=11

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Support vector machines

*  Want line that maximizes the margin.

X; positive (y; =1): X;-W+b>1
X; negative (y; =-1): X,-w+b<-1

For support, vectors, X; -W+b==1

e Distance between point | Xi-W+Db]|
and line: | wi

For support vectors:
w X +b _*1
Support vectors Margin M HWH HWH

11
il ]

_ 2
[wl

C. Burges,

, Data Mining and Knowledge Discovery,

15


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

Support vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

Want line that maximizes the margin.

X; positive (y; =1): X;-W+b>1
X; negative (y; =-1): X,-w+b<-1
For support, vectors, X;-W+b=11

Distance between point | X;-W+b]|
and line:

Therefore, the margin is 2/ ||W|

Data Mining and Knowledge Discovery,

Finding the maximum margin line

1. Maximize margin 2/|w/||
2. Correctly classifyall training data points:

X; positive (y; =1):
X; negative (y, =-1):

X, -W+b>1
X;-W+b<-1

Quadratic optimization problem:

. 1
Minimize EW W

Subjectto y,(w-x;+b)>1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,|

11/18/2015
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

- Solution: W=) &YX,

learned
weight

Support
vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

Finding the maximum margin line

« Solution: W =) &YX
b=y,—w-x; (forany supportvector)
W-X+b=>" oYX X +b
+ Classificationfunction:
f (x) =sign (w-x+Db)

=sign (Ziai YiX; - XH b)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

If f(x) <0, classify
as negative,

if f(x) > 0, classify
as positive

11/18/2015
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Questions

* What if the data is not linearly separable?

What if the data is not linearly separable?

. Separable: rulbn%HWH2 subjectto y,(w-X, +b)>1
N L
Non-separable: TVIPEHWH +CZ§i
' i=1
subjectto y,(w-X;, +b)-1+¢& >0

C: tradeoff constant, ¢ : slack variable (positive)
Whenever marginis =1, =0
Whenever margin is < 1, &, =1-Y;(W-X; +Db)

Lana Lazebnik

11/18/2015
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Today

e HMM examples

* Support vector machines (SVM)
— Basic algorithm

— Kernels
* Structured input spaces: Pyramid match kernels

— Multi-class
— HOG + SVM for person detection

* Visualizing a feature: Hoggles

* Evaluating an object detector

Non-linear SVMs

Datasets that are linearly separable with some noise
work out great: :

0 X
How about... mapping data to a higher-dimensional
space:

11/18/2015
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Non-linear SVMs: feature spaces

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/sv m.html

Nonlinear SVMs

« Thekerneltrick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(Xi,%;) = 0(%;) - 9(X;)

» This gives a nonlinear decisionboundary in the
original feature space:

ZaiyiK(xi,X) +b

11/18/2015
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“Kernel trick”: Example

2-dimensional vectors X=[x; X»];
let K(x;,x)=(1 + Xi";)
Need to show that K(x;,X)= ¢@(X;) To(x;):

KXix)=(1 + x"x)?

= 1+ Xi12Xj12 + 2 XinXj1 XioXjz+ Xi2?Xj0? + 2XinXj1 + 2XipXi2

=1 Xip? V2 XXz Xi? V2%i1 V2xio]T

[1 %12 V2 XX Xi22 V2Xi3 V252
= (%) To(x),
where ¢(X) = [1 X2 V2 X;% X2 V2X; V2X,]

Examples of kernel functions

Linear: — !
K(X, %) =X X,

2
<~
2

Gaussian RBF: K(x;x;) =exp(- )

Histogram intersection:

K (%, %,) = S min(x, (k), x;(K)

21
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SVMs for recognition

1. Define your representation for each

example.

2. Select a kernel function. | nowraces — l
\ a [ |

3. Compute pairwise kernel values m ® tmg
between labeled examples [ m o= W0t

L

4. Use this “kernel matrix’ to solve for | = \_.“ |
SVM support vectors & weights. ‘ ' o™ o |
FACES = ‘

5. To classify a new example: compute ‘—————
kernel values between new input
and support vectors, apply weights,
check sign of output.

Questions

* What if the data is not linearly separable?

* What if we have more than just two
categories?

22



Multi-class SVMs

Achieve multi-class classifier by combining a number of
binary classifiers

One vs. all

— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to itthe class of the SVM that returns the highest
decision value

One vs.one

— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example

SVMs: Pros and cons

* Pros
» Kernel-based framework is very powerful, flexible
» Often a sparse set of support vectors — compact at test time
* Work very well in practice, even with small training sample
sizes

 Cons
* No “direct” multi-class SVM, must combine two-class SVMs
» Can be tricky to select best kernel function for a problem

» Computation, memory
— Duringtraining time, mustcompute matrixof kernel values for
every pairof examples
— Learning cantake a very longtime for large-scale problems

Adanted from | ana | azebnik

11/18/2015
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Today

HMM examples

Support vector machines (SVM)

— Basic algorithm
— Kernels

e Structured input spaces: Pyramid match kernels

— Multi-class

— HOG + SVM for person detection

* Visualizing a feature: Hoggles

* Evaluating an object detector

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhone-Alps, 655 avenue de 1I'Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http://lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the compuration
on performance, concluding that fine-scale gradi fine
orientation binning, relatively coarse spatial binning, and
high-quality lacal contrast normalization tn overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with

a large range of pose variations and backgrounds.

1 Introduction

We briefly discuss previous work on human detection in
42, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on cbject detection, but
here we mention just a few relevant papers on human defec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou e
al [18] describe a pedesirian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere er al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er al [22] build an efficient

CVPR 2005

11/18/2015
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HoG descriptor

Orientation Voting

—— Overlapping Blocks

Input Image Gradient Image

Local Normalization

Dalal & Triggs, CVPR 2005

Person detection
with HoG’s & linear SVM'’s

*Map each grid cellin the
input window to a histogram
counting the gradients per
orientation.

*Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

TLEERMN

Dalal & Triggs, CVPR
2005

11/18/2015
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Person detection
with HoGs & linear SVMs

» Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005

«  httn'/llear inrialnes fr/inubs/2005/DTO5/

Understanding classifier mistakes

11/18/2015
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs

Carl Vondrick http://web.mit.edu/vondrick/ihog/slides.pdf

What information does HOG have?

Image

HOGgles: Visualizing ct Detection Features
Carl Vondric alba, MIT

11/18/2015
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HOGGLES: Visualizing Object Detection Features

What information is lost?

e e e L B e
PSS -

HOGGLES: Visualizing Object Detection Features

Method: Paired Dictionary

HOGgles: Visualizing Object Detection Features
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
http://web.mit.edu/vondrick/ihog/slides.pdf

L=t }

§
-~

EEPPAVAATIE & P ARRR S § St A4 44
XXP2F NN L PPLEERNNSAAA it 4 7 oo
AEER NN L PP EARNENN SN AN S s i "
AEENNAANRF L2 X F oS XA\ | # st | |

11/18/2015
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HOGGLES: Visualizing Object Detection Features

A microscope
to view HOG

HOGgles: Visualizing Object Detection Features;

Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz;
Antonio Torralba, MIT
http://web.mit.edu/vondrick/ihog/slides.pdf

HOGGLES: Visualizing Object Detection Features

Human Vision HOG Vision

29



HOGGLES: Visualizing Object Detection Features

HOGgles: Visualizing Object Detection Features; ICCV 2013
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
http://web.mit.edu/vondrick/ihog/slides.pdf

Today

* HMM examples

* Support vector machines (SVM)
— Basic algorithm
— Kernels
* Structured input spaces: Pyramid match kernels
— Multi-class
— HOG + SVM for person detection

* Visualizing a feature: Hoggles

* Evaluating an object detector

11/18/2015
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Scoring a sliding window detector

If predictionand ground truth are bounding boxes,
when do we have a correct detection?

Kristen Graumar]

Scoring a sliding window detector

- 0, = a:.':ea(Bp M Byt)
area(B, U Bg)

a, > 0.5= correct

B

gt

We'll say the detectionis correct(a “true positive”)if
the intersection of the bounding boxes, divided by
their union, is > 50%.

Kristen Graumar]

11/18/2015
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1,

" INRIA_Genetic (85.9)
0.9: INRIA_Flat (84.5)
0.8 Mf XRCE (84.0)

W — — — TKK(82.2)

07 ™ — — — QMUL_LSPCH (80.8)
s 0.6[ ~ QuULHsLs 0s)
k=] i UVA_SFS (80.4)
£ 05 — - = UVA_FuseAll (79.4)
o 04’ : — = " UVA_MCIP (78.6)
a B : : : ToshCam_svm (78.1)
0.3¢ — — — ToshCam_rdf (77.9)
| : : : INRIA_Larlus (77.2)
0.2} . . . . ) o . Tsinghua (76.9)
01t : : : MPI_BOW (75.7)
| UVA_Bigrams (74.6)
L " - ' * * * + * * ’ UVA_WGT (74.2)
0 010203040506070809 1 PRIPUVA (62.0)
recall (chance) (43.4)

If the detector can produce a confidence score on the
detections, then we can plot its precision vs. recall as a

threshold on the confidence is varied.

Average Precision (AP): mean precision across recall

levels

Scoring an object detector

Today

* HMM examples

* Support vector machines (SVM)
— Basic algorithm

— Kernels
* Structured input spaces: Pyramid match kernels

— Multi-class
— HOG + SVM for person detection

* Visualizing a feature: Hoggles

* Evaluating an object detector

11/18/2015
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Recall: Examples of kernel functions

= Linear: K(Xi ; Xj) = XiTXj

2
[ x|

20° )

= Gaussian RBF: K(x;x;) =exp(—

= Histogram intersection:

K(x.%,) = > min(x, (k),x, (K))

» Kernels go beyond vector space data
» Kernels also exist for “structured” input spaces like

sets, graphs, trees...

Discriminative classification with
sets of features?

* Each instance is unordered set of vectors
« Varying number of vectors per instance

Slide credit: Kristen Grauman

11/18/2015
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Partially matching sets of features

Optimal match: O(m?3)
Greedymatch: O(m2 log m)
Pyramid match: O(m)

(m=num pts)

mln Z l|x; — m(x;)]]
nate matching kernel that
maKes it practlcal to compare large sets of features
based on their partial correspondences.

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal &
Varadarajan, ...]

Slide credit: Kristen Grauman

Pyramid match: main idea

Feature space partitions
serve to “match” the local
descriptors within
successively wider regions.

Slide credit: Kristen Grauman

11/18/2015

34



Pyramid match: main idea

I(Hy,Hy) =Y _min(Hx(j), Hy(j))

=3
Histogram intersection
counts number of possible
matches at a given
partitioning.

Slide credit: Kristen Grauman

Pyramid match

L
Ka(X,V) = Y20 7 (1) 7 (4, )

=0
~ —
measures number of newly matched
difficulty of a pairs at level %
match at level 1

» For similarity, weights inversely proportional to bin size
(or may be learned)

* Normalize these kernel values to avoid favoring large sets

[Grauman & Darrell, ICCV 2005] Slide credit: Kristen Grauman

11/18/2015
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Pyramid match

Wwo

M

AL

P | Optimal match: O(m3)
AR Pyramid match: O(mL)
| X / 4
o R X I /
optimal partial
matching

The Pyramid Match Kernel: Efficient
Learning with Sets of Features. K.
Grauman and T. Darrell. Journal of
Machine Learning Research (JMLR), 8

(Apr): 725--760, 2007.

BoW Issue:

No spatial layout preserved!

0=y

=

o \HMJI

=

1)
b

Too much?

Too little?

Slide credit: Kristen Grauman

11/18/2015
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Spatial pyramid match

* Make a pyramid of bag-of-words histograms.

* Provides some loose (global) spatial layout
information

[Lazebnik, Schmid & Ponce, CVPR 2006]

Spatial pyramid match

+ Make a pyramid of bag-of-words histograms.
» Provides some loose (global) spatial layout

information
77‘| M
‘!éﬁ‘ KL (Xw Y) - Z ’L{'L (Xm: }/m)
msmm m=1
s St 0

Sum over PMKs

ill ‘ computed in image
coordinate space,
one per word.

[Lazebnik, Schmid & Ponce, CVPR 2006]

11/18/2015

37



11/18/2015

Spatial pyramid match

» Can capture scene categories well---texture-like patterns
but with some variability in the positions of all the local

i I E R -.ﬁm

office kitchen 11\ lng room

ﬂ%"n*ﬁ

bedroom mdu%ln al

Spatial pyramid match

« Can capture scene categories well---texture-like patterns
but with some variability in the positions of all the local
pieces.

* Sensitive to global shifts of the view

D
kitchen

bedl oom

country

ntain
it

e 58 5

ape
mo!
fore:

living room
bedroom
store
industrial
tall building
insicle city
street
highway
coast

highway™*

m mountain
E forest
w suburb

mountain®

open country

Confusion table
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Summary: This week

* Object recognition as classification task
+ Boosting (face detection ex)

+  Support vector machines and HOG (person detection ex)
*  Pyramid match kernels
* Hoggles visualization for understanding classifier mistakes

* Nearest neighbors and global descriptors (scene rec ex)
+ Sliding window search paradigm

* Pros and cons

+ Speed up with attentional cascade

*  Object proposals as alternative to exhaustive search
* HMM examples

« Evaluation
» Detectors: Intersection over union, precision recall
+ Classifiers: Confusion matrix

11/18/2015
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