Image gradients and edges
Thurs Sept 3
Prof. Kristen Grauman
UT-Austin

Last time

• Various models for image “noise”
• Linear filters and convolution useful for
 – Image smoothing, removing noise
 • Box filter
 • Gaussian filter
 • Impact of scale / width of smoothing filter
• Separable filters more efficient
• Median filter: a non-linear filter, edge-preserving

Image filtering

• Compute a function of the local neighborhood at each pixel in the image
 – Function specified by a “filter” or mask saying how to combine values from neighbors.

• Uses of filtering:
 – Enhance an image (denoise, resize, etc)
 – Extract information (texture, edges, etc)
 – Detect patterns (template matching)

Today
Edge detection

- **Goal**: map image from 2d array of pixels to a set of curves or line segments or contours.
- **Why**?

 ![Figure from J. Shotton et al., PAMI 2007](image)

- **Main idea**: look for strong gradients, post-process

What causes an edge?

- Reflectance changes:
 - appearance
 - information, texture
- Change in surface orientation:
 - shape
- Depth discontinuity:
 - object boundary
- Cast shadows

Edges/Gradients and invariance
Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Derivatives with convolution

For 2D function, $f(x,y)$, the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

Which shows changes with respect to x? (showing filters for correlation)

-1 1

-1 1

-1 or 1
Assorted finite difference filters

Prewitt: \(M_x = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \); \(M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \)

Sobel: \(M_x = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \); \(M_y = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \)

Roberts: \(M_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \); \(M_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \)

\[
\text{My} = \text{fspecial}('sobel'); \\
\text{outim} = \text{imfilter}(ext{double(im)}, \text{My}); \\
\text{imagesc(outim);} \\
\text{colormap gray};
\]

Image gradient

The gradient of an image:

\[
\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}
\]

The gradient points in the direction of most rapid change in intensity

\[
\nabla f = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
\nabla f = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

The gradient direction (orientation of edge normal) is given by:

\[
\theta = \tan^{-1} \left(\frac{\partial f / \partial y}{\partial f / \partial x} \right)
\]

The edge strength is given by the gradient magnitude

\[
||\nabla f|| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}
\]

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

\[
f(x)
\]

\[
\frac{d}{dx} f(x)
\]

Where is the edge?
Solution: smooth first

Derivative theorem of convolution

Derivative of Gaussian filters

\[(I \otimes g) \otimes h = I \otimes (g \otimes h)\]
Derivative of Gaussian filters

Consider $\frac{\partial^2}{\partial x^2} (h \ast f)$

Where is the edge?

2D edge detection filters

Gaussian $h(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$

derivative of Gaussian $\frac{\partial}{\partial x} h(x, y)$

$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

• ∇^2 is the Laplacian operator:
Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

Effect of σ on derivatives

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

So, what scale to choose?

It depends what we're looking for.
Mask properties

- **Smoothing**
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

- **Derivatives**
 - ________ signs used to get high response in regions of high contrast
 - Sum to ___ → no response in constant regions
 - High absolute value at points of high contrast

Seam carving: main idea

Intuition:
- Preserve the most “interesting” content
 → Prefer to remove pixels with low gradient energy
- To reduce or increase size in one dimension, remove irregularly shaped “seams”
 → Optimal solution via dynamic programming.

Seam carving: main idea

\[\text{Energy}(f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \]

- Want to remove seams where they won’t be very noticeable:
 - Measure “energy” as gradient magnitude
- Choose seam based on **minimum total energy path** across image, subject to 8-connectedness.
Let a vertical seam consist of h positions that form an 8-connected path.

Let the cost of a seam be: $\text{Cost}(s) = \sum_{i} \text{Energy}(f(s_i))$

Optimal seam minimizes this cost: $s^* = \min \text{Cost}(s)$

Compute it efficiently with dynamic programming.

Seam carving: algorithm

- Compute the cumulative minimum energy for all possible connected seams at each entry (i,j):
 $M(i,j) = \text{Energy}(i,j) + \min(M(i-1, j-1), M(i-1, j), M(i-1, j+1))$

- Then, min value in last row of M indicates end of the minimal connected vertical seam.
- Backtrack up from there, selecting min of 3 above in M.

Example

$M(i,j) = \text{Energy}(i,j) + \min(M(i-1, j-1), M(i-1, j), M(i-1, j+1))$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Energy matrix (gradient magnitude)

M matrix: cumulative min energy (for vertical seams)
Example

\[M(i, j) = \text{Energy}(i, j) + \min(M(i-1, j-1), M(i-1, j), M(i-1, j+1)) \]

Other notes on seam carving

• Analogous procedure for horizontal seams
• Can also insert seams to increase size of image in either dimension
 – Duplicate optimal seam, averaged with neighbors
• Other energy functions may be plugged in
 – E.g., color-based, interactive,…
• Can use combination of vertical and horizontal seams

Gradients -> edges

Primary edge detection steps:
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast
3. Edge localization
 Determine which local maxima from filter output are actually edges vs. noise
 • Threshold, Thin
Thresholding

• Choose a threshold value t
• Set any pixels less than t to zero (off)
• Set any pixels greater than or equal to t to one (on)

Thresholding gradient with a higher threshold

Canny edge detector

• Filter image with derivative of Gaussian
• Find magnitude and orientation of gradient
• **Non-maximum suppression:**
 – Thin wide “ridges” down to single pixel width
• **Linking and thresholding (hysteresis):**
 – Define two thresholds: low and high
 – Use the high threshold to start edge curves and the low threshold to continue them

• MATLAB: `edge(image, 'canny');`
• `>> help edge`
The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz

The Canny edge detector

thresholding

How to turn these thick regions of the gradient into curves?
Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge
• requires checking interpolated pixels p and r

The Canny edge detector

Problem:
Pixels along this edge didn’t survive the thresholding

Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them.
Recap: Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- **Non-maximum suppression:**
 - Thin wide "ridges" down to single pixel width
- **Linking and thresholding (hysteresis):**
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: `edge(image, 'canny');`
- `>>help edge`
Low-level edges vs. perceived contours

Background Texture Shadows

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/segbench/

Source: L. Lazebnik

Learn from humans which combination of features is most indicative of a "good" contour?

[D. Martin et al. PAMI 2004] Human-marked segment boundaries
What features are responsible for perceived edges?

Feature profiles (oriented energy, brightness, color, and texture gradients) along the patch's horizontal diameter

Kristen Grauman, UT Austin

[D. Martin et al. PAMI 2004]
Recall: image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a “filter” or mask saying how to combine values from neighbors.

- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Filters for features

- Map raw pixels to an intermediate representation that will be used for subsequent processing

- Goal: reduce amount of data, discard redundancy, preserve what’s useful
Template matching

- Filters as templates:
 Note that filters look like the effects they are intended to find --- "matched filters"

- Use normalized cross-correlation score to find a given pattern (template) in the image.
- Normalization needed to control for relative brightnesses.

Template matching

A toy example

Detected template Correlation map
Recap: Mask properties

- **Smoothing**
 - Values positive
 - Sum to 1 \(\rightarrow \) constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

- **Derivatives**
 - Opposite signs used to get high response in regions of high contrast
 - Sum to 0 \(\rightarrow \) no response in constant regions
 - High absolute value at points of high contrast

- **Filters act as templates**
 - Highest response for regions that "look the most like the filter"
 - Dot product as correlation

Chamfer distance

- Average distance to nearest feature

\[
D_{\text{Chamfer}}(T,I) = \frac{1}{|T|} \sum_{t \in T} d_I(t)
\]

\(I \) = Set of points in image

\(T \) = Set of points on (shifted) template

\(d_I(t) \) = Minimum distance between point \(t \) and some point in \(I \)

Figure from Belongie et al.
Chamfer distance

\[D_{\text{chamfer}}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_f(t) \]

- Average distance to nearest feature

How is the measure different than just filtering with a mask having the shape points?

How expensive is a naïve implementation?

Edge image

Distance transform

Distance Transform is a function \(D(p) \) that for each image pixel \(p \) assigns a non-negative number \(D(p) \) corresponding to distance from \(p \) to the nearest feature in the image \(I \)

Features could be edge points, foreground points,...
Distance transform

Value at \((x,y)\) tells how far that position is from the nearest edge point (or other binary image structure)

>> help bwdist

Distance transform (1D)

Two pass \(O(n)\) algorithm for 1D \(L_1\) norm

1. **Initialize**: For all \(j\)

 \[
 D[j] \leftarrow 1 \text{ if } j \text{ is in } P, \infty \text{ otherwise}
 \]

2. **Forward**: For \(j\) from 1 up to \(n-1\)

 \[
 D[j] \leftarrow \min(D[j], D[j-1]+1)
 \]

3. **Backward**: For \(j\) from \(n-2\) down to 0

 \[
 D[j] \leftarrow \min(D[j], D[j+1]+1)
 \]

Adapted from D. Huttenlocher

Distance Transform (2D)

- 2D case analogous to 1D

 - Initialization
 - Forward and backward pass

 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right
Chamfer distance

- Average distance to nearest feature

\[D_{\text{chamfer}}(T, I) = \frac{1}{|T|} \sum_{t \in T} d_f(t) \]

Fig from D. Gavrila, DAGM 1999

Chamfer distance: properties

- Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- Inexpensive way to match shapes
Chamfer matching system

- Gavrila et al.
 http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Chamfer matching system

- Gavrila et al.
 http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Chamfer matching system

- Gavrila et al.
 http://gavrila.net/Research/Chamfer_System/chamfer_system.html
Summary

- Image gradients
- Seam carving – gradients as “energy”
- Gradients \(\rightarrow \) edges and contours
- Template matching
 - Image patch as a filter
 - Chamfer matching
 - Distance transform

Coming up

- A1 out, due in 2 weeks
- Tues: Binary image analysis
 - Guest Lecture: Dr. Danna Gurari
- Thurs: Images/videos and text
 - Guest Lecture: Prof. Ray Mooney