

Image gradients and edges

Thurs Sept 3 Prof. Kristen Grauman UT-Austin

Last time

- · Various models for image "noise"
- · Linear filters and convolution useful for
 - Image smoothing, removing noise
 - Box filter
 - Gaussian filter
 Impact of scale / width of smoothing filter
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving

Image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)Detect patterns (template matching)
 - ^{c)} Today

Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement above as convolution, what would be the associated filter?

Support of the "scale" / "width" / "spread" of the facussian kernel, and controls the amount of smoothing. $\underbrace{I_{0}}_{0} \underbrace{I_{0}}_{0} \underbrace{I_{0}}_{0$

Smaller values: finer features detected

Mask properties

<u>Smoothing</u>

- Values positive
- Sum to 1 \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Derivatives

- _____ signs used to get high response in regions of high contrast
- Sum to ____ \rightarrow no response in constant regions
- High absolute value at points of high contrast

→ Optimal solution v ia dy namic programming.

 Choose seam based on minimum total energy path across image, subject to 8-connectedness.

Other notes on seam carving

- Analogous procedure for horizontal seams
- Can also insert seams to *increase* size of image in either dimension
 - Duplicate optimal seam, av eraged with neighbors
- Other energy functions may be plugged in
 E.g., color-based, interactive,...
- Can use combination of vertical and horizontal seams

Gradients -> edges

Primary edge detection steps:

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

Determine which local maxima from filter output are actually edges vs. noise

• Threshold, Thin

Thresholding

- · Choose a threshold value t
- · Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

Canny edge detector

- · Filter image with derivative of Gaussian
- · Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, `canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei

Hysteresis thresholding

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fe

Source: L. Fei-Fe

Recap: Canny edge detector

- · Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, `canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei

image	human segmentation	gradient magnitude
AND	and the stand	And a

Recall: image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- · Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Filters for features

 Map raw pixels to an intermediate representation that will be used for subsequent processing

Adapted from Derek H

 Goal: reduce amount of data, discard redundancy, preserve w hat's useful

Template matching

• Filters as templates:

Note that filters look like the effects they are intended to find --- "matched filters"

- Use normalized cross-correlation score to find a giv en pattern (template) in the image.
- Normalization needed to control for relative brightnesses.

Recap: Mask properties

<u>Smoothing</u>

- Values positive
- Sum to 1 \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Derivatives

- Opposite signs used to get high response in regions of high contrast
- Sum to 0 \rightarrow no response in constant regions
- High absolute value at points of high contrast

• Filters act as templates

- · Highest response for regions that "look the most like the filter"
- · Dot product as correlation

S 5 Fig. 1. Examples of two handwritten digits. In terms of pixel-to-pixel comparisons, these two images are quice different, but to the human observer, the shapes appear to be similar.

Chamfer distance

· Average distance to nearest feature

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

I = Set of points in image

T= Set of points on (shifted) template

 $d_{I}(t) = \underset{\text{and some point in } I}{\text{Minimum distance between point t}}$

Distance transform

Value at (x,y) tells how far that position is from the nearest edge point (or other binary mage structure) >> help bwdist

Chamfer distance: properties

- · Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- Inexpensive way to match shapes

Chamfer matching system Image: system system Image: system system Image: system system system • Gavrila et al. http://gavrila.net/Research/Chamfer_System/chamfer_s ystem.html

Summary

- Image gradients
- Seam carving gradients as "energy"
- Gradients \rightarrow edges and contours
- Template matching
 - Image patch as a filter
 - Chamfer matching
 Distance transform

Coming up

- A1 out, due in 2 weeks
- Tues: Binary image analysis – Guest Lecture : Dr. Danna Gurari
- Thurs: Images/videos and text – Guest Lecture: Prof. Ray Mooney