Image gradients and edges

Thurs Sept 3
Prof. Kristen Grauman
UT-Austin
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Last time

Various models forimage “noise”

Linear filters and convolution useful for

— Image smoothing, remov ing noise
« Box filter
« Gaussian filter
« Impact of scale / width of smoothing filter

Separable filters more efficient

Median filter: a non-linear filter, edge-preserving

Image filtering

Compute a function of the local neighborhood at

each pixel in the image

— Function specified by a “filter” or mask saying how to

combine values from neighbors.

Uses of filtering:

— Enhance an image (denoise, resize, etc)

— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Today

Adapted fomDerek Hoiem




Edge detection

» Goal: map image from 2d array of pixels to a set of
curves or line segments or contours.

* Why?
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Figure from J. Shotton et al, PAMI2007
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Main idea: look for strong gradients, post-process
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What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance
information, texture

Change in surface
orientation: shape

Edges/gradients and invariance




Derivatives and edges

Anedge is a place of rapid change in the
image intensity function.

intensity function

image (along horizontal scanline) first derivative

edges correspond to
extrema of deriv ative

Source: | | azehni
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Derivatives with convolution

For 2D function, f(x,y), the partial deriv ativ e is:

A% Y) _ i [ 29~ 1(x,9)
OX

&0 Pad

For discrete data, we can approximate using finite
differences:

of(xy)  Fx+Ly)-f(xy)
OX 1

To implement abov e as conv olution, what would be the
associated filter?

Partial derivatives of an image

Which shows changes with respect to x?

(showing filters for correlation)




Assorted finite difference filters

Prewitt: M, =

Sobel: M, =

Roberts:

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im) , My) ;
>> imagesc (outim) ;

>> colormap gray;
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Image gradient
The gradient of an image:
— [of of

The gradient points in the direction of most rapid change in intensity
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The gradient direction (orientation of edge normal) is given by:
— —1(9f ,0f
6 = tan—1 (5L/51)
The edge strength is given by the gradient magnitude

0+ G0

V5l = !

Slide credit Steve Seitz
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Effects of noise

Consider a single row or column of the image
« Plotting intensity as a function of position gives a signal
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Where is the edge?

slide credit Steve Seitz
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Solution: smooth first

Sigma = 50

1l H : ] H |

=
Signal

0 200 400 GOD  BO0 1000 1200 1400 1600 1800 2000

o

N
>

gF T ¥ Frg———— 1 ]
hx f ] S ; . / JSNINE SUNUUE WOROR RO
£
8 i : g ; |
0 200 400 GO0 abn 1000 1éGD 1400 1530 1800 2000
; 3 : 5
e} 2 /
aehxf) g1 /
Sobo A —
[ 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Derivative theorem of conwolution

a(hx ) = Ry« f
Differentiation property of convqlut[on.
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Comolution
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Slide credit Steve Seitz

Derivative of Gaussian filters

(1 ®g)®h = 1 ®(g®h)
/
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Derivative of Gaussian filters

e

x-direction y-direction

Source: L. Lazebnik

Laplacian of Gaussian
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Where is the edge?

Slide credit Steve Seitz

2D edge detection filters

Laplacian of Gaussian
i

Gaussian deriv ativ e of Gaussian

_u?4y? a
ho(u,v) = Q:UQP 202 5ol (W) V2ho(u,v) il
v

+ V?is the Laplacian operator:

2p _ 82f 4 0°F

Slide credit Steve Seitz




Smoothing with a Gaussian

Recall: parameter o is the “scale”/ “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Effect of o on derivatives

o =1 pixel o =3 pixels

The apparent structures differ depending on
Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

So, what scale to choose?

It depends what we're looking for.
TN\ ; 53




Mask properties
* Smoothing

— Values positive

— Sum to 1> constant regions same as input

— Amount of smoothing proportional to mask size

— Remowve “high-frequency’ components; “low-pass” filter

» Derivatives

- signs used to get high response in regions of high
contrast

— Sumto ___ - noresponse inconstant regions

— High absolute value at points of high contrast
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Seam carving: main idea

Content-aware resizing

Intuition:

» Preserve the most “interesting” content

- Prefertoremov e pixels with low gradient energy

» To reduce or increase size in one dimension,
remove irregularly shaped “seams”
-> Optimal solution via dy namic programming.

Seam carving:

e

main idea

g

* Want to remove seams w here they w on't be very
noticeable:

— Measure “energy” as gradient magnitude
» Choose seambased on minimum total energy
path across image, subject to 8-connectedness.




Seam carving: algorithm

Energy()=\/(3)° + (31)°

Let a vertical seam s consist of h positions that
forman 8-connected path.
h
Let the costof a seam be: Cost(s) =D Energy(f(s;))
i=1

Optimal seam minimizes this cost: s*=minCost(s)

Compute it efficiently with dynamic programming.
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Seam carving: algorithm

» Compute the cumulative minimum energy for all possible
connected seams at each entry (i,j):

M(i, j) = Energy (i, j) +min(M(i -1, j —1),M(i -1, j),M(i -1, j +1))

=

Enérgy matrix M matrix:
(gradient magnitude) cumulative min energy
(for vertical seams)
» Then, min valuein last row of Mindicates end of the
minimal connected v ertical seam.

» Backtrack up from there, selecting min of 3 above in M.

Example

M, j) = Energy (i, j) +min(M(i -1, j -1),M(i~1 j),M(i -1, j+1))

130 HE
2809 00
526 000

Enérgy matrix M matrix
(gradient magnitude) (for vertical seams)
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Example

M(i, j) = Energy (i, j)+min(M(i -1, j-2),M(i -1, j),M(i -1, j +1))

30| @3 o
[3]8 9

89
5216 8 [5] 14

% 4

Enérgy matrix M matrix
(gradient magnitude) (for vertical seams)

Other notes on seam carving

» Analogous procedure for horizontal seams

» Can also insert seams to increase size of image
in either dimension

— Duplicate optimal seam, av eraged with neighbors
» Other energy functions may be plugged in
— E.g., color-based, interactive,...

» Can use combination of vertical and horizontal
seams

Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress hoise

2. Edge enhancement: filter for contrast
3. Edge localization

Determine w hich local maxima from filter output
are actually edges vs. noise

* Threshold, Thin

10



Thresholding

» Choose athreshold value t

» Set any pixels less than t to zero (off)

» Set any pixels greater than or equal to t to one
(on)
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Thresholding gradient with a higher th

{ v

reshold
|

Canny edge detector

* Filterimage with derivative of Gaussian
* Find magnitude and orientation of gradient
*+ Non-maximum suppression:
— Thin wide “ridges” down to single pixel width
* Linking and thresholding (hysteresis):
— Define two thresholds: low and high

— Usethe high threshold to start edge curves and
the low threshold to continue them

* MATLAB: edge(image, ‘canny’);
¢ >>help edge

Source: D. Lowe, L. Fei-Fei

11



The Canny edge detector

original image (Lena)

Slide credit Steve Seitz
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The Canny edge detector

thresholding

The Canny edge detector

How to tumn
these thick
regions of the
gradient into
curves?
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Non-maximum suppression
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Check if pixelis local maximum along gradient direction,
select single max across width of the edge
« requires checking interpolated pixels pand r

9/2/2015

The Canny edge detector

Problem:
pixels along
this edge
didn’t
survive the
thresholding

thinning
(non-maximum suppression)

Hysteresis thresholding

» Use a high threshold to startedge curves,
and a low threshold to continue them.

7

Source: Steve Seitz
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Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei
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Hysteresis thresholding

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei

Recap: Canny edge detector

* Filterimage with derivative of Gaussian
* Find magnitude and orientation of gradient
*+ Non-maximum suppression:
— Thin wide “ridges” down to single pixel width
* Linking and thresholding (hysteresis):
— Define two thresholds: low and high

— Usethe high threshold to start edge curves and
the low threshold to continue them

* MATLAB: edge(image, ‘canny’);
¢ >>help edge

Source: D. Lowe, L. Fei-Fei

14



Low-level edges vs. perceived contours

Shadows

Background Eexture
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Low-level edges vs. perceived contours

image human segmentation gradient magnitude

Source: L. Lazebnik

Learn from
humans which
combination of
features is most
indicative of a
“good” contour?

[D. Martin et al. PAMI 2004]

15


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

What features are responsible for
perceived edges°
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What features are responsible for
perceived edges?
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[D. Martin et al. PAMI 2004] Kristen Grauman 1)
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Contour Detection

Canny +opt .
thresholds ~. Human
- agreement
Canny

Prewitt.
Sobel, TR ~ Learned
Roberts . S "y ‘ with

combined
features

UC Berkeley Source:Jitendra Malik: Computer Vision Group
hip/www cs berkeley edu/~malik/malik-talks-ptrs html

Recall: image filtering

» Compute a function of the local neighborhood at
each pixel in the image
— Function specified by a “filter” or mask saying how to
combine values from neighbors.

» Uses of filtering:
— Enhance an image (denoise, resize, etc)
— Extract information (texture, edges, etc)
— Detect patterns (template matching)

Adapted from Derek Hoiem

Filters for features

* Map raw pixels to an
intermediate representation that
w illbe used for subsequent
processing

* Goal: reduce amount of data,
discard redundancy, preserve
w hat's useful

17



Template matching

Filters as templates:

Note that filters look like the effects they are intended
to find --- “matched filters”

Use normalized cross-correlation score to find a
given pattern (template) in the image.

Normalization needed to control for relative
brightnesses.
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Template matching

Ny 3
A

Template (mask)

Scene

Atoy example

Template matching

N
A

Detected template Correlation map
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Recap: Mask properties
* Smoothing

— Values positive

— Sum to 1> constant regions same as input

— Amount of smoothing proportional to mask size

— Remowve “high-frequency’ components; “low-pass” filter

» Derivatives
— Opposite signs used to get high response in regions of high
contrast
— Sum to 0 -> no response in constant regions
— High absolute value at points of high contrast

« Filters actas templates
« Highest response for regions that “look the most like the filter”
« Dot product as correlation
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S S

Fig. 1. Examples of two handwritten digits. In terms of pixek-to-pixel
ite different, but 1o the human
simiar

observer, the shapes appe:

Figure from Belongie et al.

Chamfer distance

» Average distance to nearest feature

1
DenampserT.1) = o S di()

teT
I = Set of points inimage
T = set of points on (shifted) template

dI (t) = Minimum distance between point t
and some pointin /

19



Chamfer distance

OO
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Dopamgfer(T, T) ;_Z:f,lf\

teT
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Chamfer distance

» Average distance to nearest feature

1 How is the measure
Dopamper T 1) r Z'h‘f‘ different than just
teT filtering with a mask
having the shape
points?

How expensive is a
naive
inplementation?

Edge image

Distance transform

Image features (2D) Distance Transform
1

s ool -
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Distance Transform is afunction D() that for each image
pixel p assigns a non-negative number D(p) corresponding to
distance from p to the nearest feature in the image |

Features could be edge points, foreground points,...

Source: Yuri Boykov
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Distance transform

original distance transform

Value at (xy) tells how far
that position is fromthe
nearest edge point (or other
binary mage structure)

>> help bwdist
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Distance transform (1D)

Two pass O(n) algorithm for 1D L; norm

1. Initialize: For all j
D[] « 1p[i] /10 ifjis in P, infinity otherwise
2. Forward: For j from 1 up to n-1
D[j] « min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to O
D[j] <= min(D[j],D[j+1]+1)
[=[o =0 =[=[=[0]=]

[=[o]1]o]1]2]3]0]1]

[2]o]2]o]z]2]2]0]1]

Adapted fromD. Hutterlocher

Distance Transform (2D)

= 2D case analogous to 1D
- Initialization
- Forward and backward pass
* Fwd pass finds closest above and to left
* Bwd pass finds closest below and to right

o] = =] = o ] ol o o] w| = ANAR
"ner o o] 1] = of0]1]2 ilalaf2
o] 0] | = wf 0] o] w olo]1]2 AfANEe
o] w| ] « wof o] w| w of1]2]3 2fi]z2]s

11

HEH

Adapted fromD
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Chamfer distance

* Average distance to nearest feature

1
Denamyper(T, 1) ”Zd‘,l!l

Edge image Distance transform image

9/2/2015

Chamfer distance

Edge image Distance transform image

Fig from D.Gavrila,DAGM 1999

Chamfer distance:
properties

Sensitive to scale and rotation

+ Tolerant of small shape changes, clutter
* Need large number of template shapes
* Inexpensive w ay to match shapes

22



Chamfer matching system

Gavrila etal.
http://gawila.net/Research/Chamfer_Syste m/chamfer_system.html
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Chamfer matching system

* Gavila etal.
http://gawrila.net/Research/Chamfer_Syste m/chamfer_s ystem.html

Chamfer matching system

Combined Hierarchical Approachin Transform sticn and Shape Space

=}
{ Coms-tofine Pt e -

. MakhGrid

PR sl |

Temgla N N
Himarchy

+ Gawilaetal.
http://gawrila.net/Research/Chamfer_Syste m/chamfer_s ystem.html
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Summary

* Image gradients
» Seam canving — gradients as “energy”
» Gradients - edges and contours
* Template matching
—Image patch as a filter

— Chamfer matching
« Distance transform

Coming up

* Al out, duein 2 weeks

» Tues: Binary image analysis

— Guest Lecture : Dr. Danna Gurari
Thurs: Images/videos and text
— Guest Lecture: Prof. Ray Mooney
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