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Image gradients and edges

Thurs Sept 3

Prof. Kristen Grauman

UT-Austin

Last time

• Various models for image “noise”

• Linear f ilters and convolution useful for

– Image smoothing, remov ing noise

• Box filter

• Gaussian filter

• Impact of scale / width of smoothing filter

• Separable f ilters more eff icient 

• Median f ilter: a non-linear f ilter, edge-preserving

Image filtering

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specif ied by  a “f ilter” or mask say ing how to 

combine v alues f rom neighbors.

• Uses of f iltering:

– Enhance an image (denoise, resize, etc)

– Extract inf ormation (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem

Today
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Edge detection

• Goal: map image f rom 2d array  of  pixels to a set of  

curv es or line segments or contours.

• Why?

• Main idea: look f or strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

What causes an edge?

Depth discontinuity: 
object boundary

Change in surface 
orientation: shape

Cast shadows

Reflectance change: 
appearance 
information, texture

Edges/gradients and invariance
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Derivatives and edges

image
intensity function

(along horizontal scanline) first deriv ativ e

edges correspond to
extrema of deriv ativ e

Source: L. Lazebnik

An edge is a place of rapid change in the 

image intensity function.

Derivatives with convolution

For 2D f unction, f (x,y), the partial deriv ativ e is:

For discrete data, we can approximate using f inite 

dif f erences:

To implement abov e as conv olution, what would be the 

associated f ilter?
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Partial derivatives of an image

Which shows changes with respect to x?
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Assorted finite difference filters

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My); 

>> imagesc(outim);

>> colormap gray;

Image gradient

The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit Steve Seitz

Effects of noise

Consider a single row or column of  the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Slide credit Steve Seitz
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Where is the edge?  

Solution:  smooth first

Derivative theorem of convolution

Dif f erentiation property  of  convolution.

Slide credit Steve Seitz

 11  
0.0030    0.0133    0.0219    0.0133    0.0030
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Derivative of Gaussian filters
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Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik

Laplacian of Gaussian

Consider  

Laplacian of Gaussian
operator

Where is the edge?  
Slide credit: Steve Seitz

2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian deriv ativ e of Gaussian

Slide credit: Steve Seitz
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Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of  the 

Gaussian kernel, and controls the amount of  smoothing.

…

Effect of σ on derivatives

The apparent structures differ depending on 

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: f iner features detected

σ = 1 pixel σ = 3 pixels

So, what scale to choose?
It depends what we’re looking f or.
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Mask properties
• Smoothing

– Values positive 

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– ___________ signs used to get high response in regions of high 

contrast

– Sum to ___  no response in constant regions

– High absolute value at points of high contrast

Content-aware resizing

Seam carving: main idea

Intuition: 

• Preserve the most “interesting” content

 Pref er to remov e pixels with low gradient energy

• To reduce or increase size in one dimension, 

remove irregularly shaped “seams”

 Optimal solution v ia dy namic programming.

• Want to remove seams w here they w on’t be very 

noticeable:

– Measure “energy ” as gradient magnitude

• Choose seam based on minimum total energy 

path across image, subject to 8-connectedness.

Seam carving: main idea

)( fEnergy
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Let a vertical seam s consist of h positions that 

form an 8-connected  path.

Let the cost of a seam be:

Optimal seam minimizes this cost:

Compute it eff iciently w ith dynamic programming.

Seam carving: algorithm
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Seam carving: algorithm
• Compute the cumulativ e minimum energy  f or all possible 

connected seams at each entry  (i,j):

• Then, min v alue in last row of  M indicates end of  the 

minimal connected v ertical seam.  

• Backtrack up f rom there, selecting min of  3 abov e in M.

 )1,1(),,1(),1,1(min),(),(  jijijijiEnergyji MMMM

j-1

jrow i

M matrix: 
cumulativ e min energy

(for v ertical seams)

Energy matrix
(gradient magnitude)

j j+1

Example

625
982
031

Energy matrix
(gradient magnitude)

M matrix
(for v ertical seams)

1458

983

031

 )1,1(),,1(),1,1(min),(),(  jijijijiEnergyji MMMM
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Example

625
982
031

Energy matrix
(gradient magnitude)

M matrix
(for v ertical seams)

1458

983

031

 )1,1(),,1(),1,1(min),(),(  jijijijiEnergyji MMMM

Other notes on seam carving

• Analogous procedure for horizontal seams 

• Can also insert seams to increase size of image 

in either dimension

– Duplicate optimal seam, av eraged with neighbors

• Other energy functions may be plugged in

– E.g., color-based, interactiv e,…

• Can use combination of vertical and horizontal 

seams

Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: f ilter for contrast

3. Edge localization

Determine w hich local maxima from filter output 
are actually edges vs. noise 

• Threshold, Thin
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Thresholding

• Choose a threshold value t

• Set any pixels less than t to zero (off)

• Set any pixels greater than or equal to t to one 

(on)

Thresholding gradient with a higher threshold

Canny edge detector

• Filter image with deriv ativ e of  Gaussian 

• Find magnitude and orientation of  gradient

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Def ine two thresholds: low and high

– Use the high threshold to start edge curv es and 

the low threshold to continue them

• MATLAB:   edge(image, ‘canny’);

• >>help edge
Source: D. Lowe, L. Fei-Fei
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The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz

The Canny edge detector

thresholding

The Canny edge detector

thresholding

How to turn 
these thick 

regions of the 
gradient into 
curves?
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Non-maximum suppression

Check if  pixel is local maximum along gradient direction, 

select single max across width of  the edge

• requires checking interpolated pixels p and r

The Canny edge detector

thinning

(non-maximum suppression)

Problem: 

pixels along 

this edge 

didn’t 

surv iv e the 

thresholding

Hysteresis thresholding

• Use a high threshold to start edge curves, 

and a low  threshold to continue them.

Source: Steve Seitz
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Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei

Recap: Canny edge detector

• Filter image with deriv ativ e of  Gaussian 

• Find magnitude and orientation of  gradient

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Def ine two thresholds: low and high

– Use the high threshold to start edge curv es and 

the low threshold to continue them

• MATLAB:   edge(image, ‘canny’);

• >>help edge
Source: D. Lowe, L. Fei-Fei
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Background Texture Shadows

Low-level edges vs. perceived contours

Low-level edges vs. perceived contours

Berkeley  segmentation database:
http://www.eecs.berkeley.edu/ Res earc h/Projects/CS/vision/gr ouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from 
humans which 

combination of 
features is most 
indicative of a 

“good” contour?

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 
(oriented energy, 

brightness, color, 
and texture 
gradients) along 

the patch’s 
horizontal 

diameter

Kristen Grauman, UT-Austin

[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 
(oriented energy, 

brightness, color, 
and texture 
gradients) along 

the patch’s 
horizontal 

diameter

Kristen Grauman, UT-Austin

[D. Martin et al. PAMI 2004]
Kristen Grauman, UT-Austin
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Computer Vision GroupUC Berkeley

Contour Detection

Source: J itendra Malik: 

http://www.cs.berkeley.edu/~malik/malik -talks-ptrs.html

Prewitt, 
Sobel, 
Roberts

Canny

Canny+opt
thresholds

Learned 
with 
combined 

features

Human 
agreement

Recall: image filtering

• Compute a function of the local neighborhood at 

each pixel in the image

– Function specif ied by  a “f ilter” or mask say ing how to 

combine v alues f rom neighbors.

• Uses of f iltering:

– Enhance an image (denoise, resize, etc)

– Extract inf ormation (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem

Filters for features

• Map raw  pixels to an 

intermediate representation that 

w ill be used for subsequent 

processing

• Goal: reduce amount of data, 

discard redundancy, preserve 

w hat’s useful
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Template matching

• Filters as templates: 

Note that f ilters look like the ef f ects they are intended 

to f ind --- “matched f ilters”

• Use normalized cross-correlation score to f ind a 

giv en pattern (template) in the image.

• Normalization needed to control f or relativ e 

brightnesses.

Template matching

Scene

Template (mask)

A toy example

Template matching

Detected template Correlation map
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Recap: Mask properties
• Smoothing

– Values positive 

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– Opposite signs used to get high response in regions of high 

contrast

– Sum to 0  no response in constant regions

– High absolute value at points of high contrast

• Filters act as templates
• Highest response for regions that “look the most like the filter”

• Dot product as correlation

Figure from Belongie et al.

Chamfer distance

• Av erage distance to nearest f eature

I

T

Set of  points in image

Set of  points on (shif ted) template

)(td I
Minimum distance between point t 

and some point in I
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Chamfer distance

Chamfer distance

• Av erage distance to nearest f eature

Edge image

How is the measure 
different than just 
filtering with a mask 

having the shape 
points?

How expensive is a 
naïve 
implementation?

Source: Yuri Boykov
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Distance TransformImage features (2D)

Distance Transform is a function           that for each image 

pixel  p assigns a  non-negative number            corresponding to 

distance from p to the nearest feature in the image  I

)(D

)( pD

Features could be edge points, foreground points,…

Distance transform
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Distance transform

original distance transform
edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 

binary mage structure) 

>> help bwdist

Distance transform (1D)

Adapted from D. Huttenlocher

// 0 if j is in P, infinity otherwise

Distance Transform (2D)

Adapted from D. Huttenlocher
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Chamfer distance

• Av erage distance to nearest f eature

Edge image Distance transform image

Chamfer distance

Fig from D. Gavrila, DAGM 1999

Edge image Distance transform image

Chamfer distance: 

properties

• Sensitive to scale and rotation

• Tolerant of small shape changes, clutter

• Need large number of template shapes

• Inexpensive w ay to match shapes
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Chamfer matching system

• Gavrila et al. 
http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Chamfer matching system

• Gavrila et al. 
http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Chamfer matching system

• Gavrila et al. 
http://gavrila.net/Research/Chamfer_System/chamfer_system.html



9/2/2015

24

Summary

• Image gradients

• Seam carving – gradients as “energy”

• Gradients  edges and contours

• Template matching

– Image patch as a f ilter

– Chamfer matching

• Distance transf orm

Coming up

• A1 out, due in 2 weeks

• Tues: Binary image analysis

– Guest Lecture : Dr. Danna Gurari

• Thurs: Images/videos and text

– Guest Lecture: Prof. Ray Mooney


