Computer Vision

Dr. Danna Gurari September 8, 2015

Today's Outline

- Aligning two images
 - Chamfer distance Applications
- Analyze binary images

 - Thresholding
 Morphological operators
 - Connected components
 - Region properties
 - Applications

Today's Outline

Aligning two images

- Chamfer distance
- Applications
- Analyze binary images
 - Thresholding
 - Morphological operators
 - Connected components
 - Region properties
 - Applications

Chamfer distance

Average matching distance to nearest feature

How is the measure different than just filtering with a mask having the shape points?

How expensive is a naïve implementation?

Distance transform (1D)

Two pass O(n) algorithm for 1D L_1 norm

pted from D. Huttenloche

Chamfer distance: Exam	ple
INPUT	OUTPUT
Scene Image 1. Fedure Image 2. Distance Image 3.	Matching Result

Chamfer distance: properties

- · Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- · Inexpensive way to match shapes

Today's Outline

Aligning two images
 Chamfer distance

- Charmer dista
 Applications
- Analyze binary images
 - Thresholding
 - Morphological operators
 - Connected components
 - Region properties
 - Applications

Binary image analysis: basic steps

- Convert the image into binary form
 Thresholding
- Clean up the thresholded image
 Morphological operators
- Extract separate blobs
- Connected components
- · Describe the blobs with region properties

- Two pixel values
 - Foreground and background
 - Mark region(s) of interest

Thresholding

- Grayscale -> binary mask
- Useful if object of interest's intensity distribution is distinct from background

$$\begin{split} F_{T}[i,j] = \begin{cases} 1 & \text{if } F[i,j] \geq T \\ 0 & otherwise. \end{cases} \\ F_{T}[i,j] = \begin{cases} 1 & \text{if } T_{1} \leq F[i,j] \leq T_{2} \\ 0 & otherwise. \end{cases} \\ F_{T}[i,j] = \begin{cases} 1 & \text{if } F[i,j] \in Z \\ 0 & otherwise. \end{cases} \\ \end{cases} \\ \end{split}$$

Thresholding

 Given a grayscale image or an intermediate matrix → threshold to create a binary outputExample: background subtraction

uman. UT-Austir

Looking for pixels that differ significantly from the "empty" background.

fg_pix = find(diff > t);

Issues

- What to do with "noisy" binary outputs?
 - Holes
 - Extra small fragments
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

Morphological operators

- Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image.
- · Useful to clean up result from thresholding
- · Basic operators are:
 - Dilation
 - Erosion

Dilation

- · Expands connected components
- · Grow features
- Fill holes

Structuring elements

• Masks of varying shapes and sizes used to perform morphology, for example:

Kristen Grauman, UT-

Scan mask across foreground pixels to transform the binary image

• >> help strel

.....

Dilation vs. Erosion

- At each position:
- **Dilation**: if current pixel is foreground, OR the structuring element with the input image.

Example for Dilation (1D)										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	1 1	- 1]		8	(x)	= f	'(x)	€S	E
Output Image	1	1								
Adapted from T. Moeslund										

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	1	1	1]						
Output Image	1	1								

Example for Dilation											
Input image	1	0	0	0	1	1	1	0	1	1]
Structuring Element	t						1	1	1		
Output Image	1	1	0	1	1	1	1	1]

Dilation vs. Erosion

At each position:

- **Dilation**: if **current pixel** is foreground, OR the structuring element with the input image.
- Erosion: if every pixel under the structuring element's nonzero entries is foreground, OR the current pixel with S.

Example for Erosion											
Input image	1	0	0	0	1	1	1	0	1	1	
Structuring Elemen	t							1	↓ 1	1	
Output Image	0	0	0	0	0	1	0	0	0		

Opening

- · Erode, then dilate
- · Remove small objects, keep original shape

Before opening

After opening

Morphology operators on grayscale images

- Dilation and erosion typically performed on binary images.
- If image is grayscale: for dilation take the neighborhood **max**, for erosion take the **min**.

Issues

 What to do with "noisy" binary outputs?

- Holes

- Extra small fragments
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

Connected components

- Various algorithms to compute
 - Recursive (in memory)
 - Two rows at a time (image not necessarily in memory)
 - Parallel propagation strategy

Recursive connected components

- Find an unlabeled pixel, assign it a new label
- Search to find its neighbors, and recursively repeat to find their neighbors til there are no more
- Repeat
- Demo <u>http://www.cosc.canterbury.ac.nz/mukundan/covn/Label.html</u>

numbered per their

22

Binary image analysis: basic steps (recap)

- Convert the image into binary form
 Thresholding
- Clean up the thresholded image
 Morphological operators
- Extract separate blobs
 Connected components
- · Describe the blobs with region properties

Matlab

• N	=	hist(Y,N	1)
• L	=	bwlabel	(BW,N);

- STATS =
- regionprops(L,PROPERTIES) ;
- 'Area'
- 'Centroid'
- 'BoundingBox'
- 'Orientation', ...
- IM2 = imerode(IM,SE);
- •IM2 = imdilate(IM,SE);
- IM2 = imclose(IM, SE); • IM2 = imopen(IM, SE);

25

-		

Example using binary image analysis: Bg subtraction + blob detection

University of Southern California http://iris.usc.edu/~icohen/projects/vace/detection.htm

Binary images

• Pros

- Can be fast to compute, easy to store
- Simple processing techniques available
- Lead to some useful compact shape descriptors

• Cons

- Hard to get "clean" silhouettes
- Noise common in realistic scenarios
- Can be too coarse of a representation

– Not 3d

Today's Outline (Completed)

Aligning two images

- Chamfer distance
- Applications
- Analyze binary images
 - Thresholding
 - Morphological operators
 - Connected components
 - Region properties
 - Applications

Background Subtraction

Given an image (mostly likely to be a video frame), we want to identify the foreground objects in that image!

Motivation

credit: Birgi Tamersov

- In most cases, objects are of interest, not the scene.
- Makes our life easier: less processing costs, and less room for error.

Background subtraction

- · Simple techniques can do ok with static camera
- ...But hard to do perfectly
- · Widely used:
 - Traffic monitoring (counting vehicles, detecting & tracking vehicles, pedestrians),
 - Human action recognition (run, walk, jump, squat),
 - Human-computer interaction
 - Object tracking

Frame Differencing

 Background is estimated to be the previous frame. Background subtraction equation then becomes:

$$B(x, y, t) = I(x, y, t-1)$$

$$\downarrow$$

$$|I(x,y,t)-I(x,y,t-1)|>Th$$

 Depending on the object structure, speed, frame rate and global threshold, this approach may or may not be useful (usually not).

Pros and cons

Advantages:

- Extremely easy to implement and use!
- · All pretty fast.
- Corresponding background models need not be constant, they change over time.

Disadvantages:

- Accuracy of frame differencing depends on object speed and frame rate
- Median background model: relatively high wnemolitythis quasa reports ach fail?
- credits Birgi Tamersov

