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Fitting: 

Voting and the Hough Transform

Thurs Sept 24

Kristen Grauman

UT Austin

Last time

• What are grouping problems in vision?

• Inspiration from human perception

– Gestalt properties

• Bottom-up segmentation via clustering

– Algorithms: 

• Mode finding and mean shift: k-means, mean-shift

• Graph-based: normalized cuts

– Features: color, texture, …

• Quantization for texture summaries

q

Images as graphs

Fully-connected graph

• node (vertex) for every pixel

• link between every pair of pixels, p,q

• affinity weight wpq for each link (edge)

– wpq measures similarity

» similarity is inversely proportional to difference (in color and position…)

p

wpq

w

Source: Steve Seitz
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Segmentation by Graph Cuts

Break Graph into Segments

• Want to delete links that cross between segments

• Easiest to break links that have low similarity (low weight)

– similar pixels should be in the same segments

– dissimilar pixels should be in different segments

w

A B C

Source: Steve Seitz

q

p

wpq

Cuts in a graph: Min cut

Link Cut

• set of links whose removal makes a graph disconnected

• cost of a cut:

A
B

Find minimum cut

• gives you a segmentation

• fast algorithms exist for doing this

Source: Steve Seitz


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Measuring affinity for edge weights

• One possibility: 

Small sigma: 

group only 

nearby points

Large sigma: 

group distant 

points
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σ=.1 σ=.2 σ=1

σ=.2 

Data points

Affinity 

matrices

Measuring affinity for edge weights

Cuts in a graph: Min cut

Link Cut

• set of links whose removal makes a graph disconnected

• cost of a cut:

A
B

Find minimum cut

• gives you a segmentation

• fast algorithms exist for doing this

Source: Steve Seitz
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Minimum cut

• Problem with minimum cut:  

Weight of  cut proportional to number of  edges in the cut; 

tends to produce small, isolated components.

[Shi & Malik, 2000 PAMI]
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Cuts in a graph: Normalized cut

A
B

Normalized Cut

• fix bias of Min Cut by normalizing for size of segments:

assoc(A,V) = sum of weights of all edges that touch A

• Ncut value small when we get two clusters with many edges 
with high weights, and few edges of low weight between them

• Approximate solution for minimizing the Ncut value : 
generalized eigenvalue problem.

Source: Steve Seitz

),(

),(

),(

),(

VBassoc

BAcut

VAassoc

BAcut


J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997 

Example results

Normalized cuts: pros and cons

Pros:

• Generic f ramework, f lexible to choice of  f unction that 

computes weights (“af f inities”) between nodes

• Does not require model of  the data distribution

Cons:

• Time complexity  can be high

– Dense, highly connected graphs  many affinity computations

– Solving eigenvalue problem

• Pref erence f or balanced partitions

http://www.cs.washington.edu/education/courses/455/03wi/readings/Ncut.pdf
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Segments as primitives for recognition

B. Russell et al., “Using Multiple Segmentations to Discover Objects and 
their Extent in Image Collections,” CVPR 2006 

Multiple segmentations

Slide credit: Lana Lazebnik

Top-down segmentation

Slide credit: Lana Lazebnik

E. Borenstein and S. Ullman, “Class-specific, top-down segmentation,” ECCV 2002

A. Levin and Y. Weiss, “Learning to Combine Bottom-Up and Top-Down Segmentation,”
ECCV 2006.

Top-down segmentation

E. Borenstein and S. Ullman, “Class-specific, top-down segmentation,” ECCV 2002

A. Levin and Y. Weiss, “Learning to Combine Bottom-Up and Top-Down Segmentation,”
ECCV 2006.

Normalized 
cuts

Top-down 
segmentation

Slide credit: Lana Lazebnik

http://www.di.ens.fr/~russell/projects/mult_seg_discovery/index.html
http://www.msri.org/people/members/eranb/class_specific_top_down.pdf
http://www.wisdom.weizmann.ac.il/~levina/papers/CRFs-eccv06.pdf
http://www.msri.org/people/members/eranb/class_specific_top_down.pdf
http://www.wisdom.weizmann.ac.il/~levina/papers/CRFs-eccv06.pdf
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Motion segmentation

Image Segmentation Motion SegmentationInput sequence

Image Segmentation Motion SegmentationInput sequence

A.Barbu, S.C. Zhu.  Generalizing Swendsen-Wang to sampling arbitrary posterior 
probabilities, IEEE Trans. PAMI, August 2005.   

K. Grauman & T. Darrell, Unsupervised Learning of Categories from Sets of Partially 
Matching Image Features, CVPR 2006.

Image grouping

Recap on grouping

• Segmentation to f ind object boundaries or mid-

level regions, tokens.

• Bottom-up segmentation via clustering

– General choices -- f eatures, af finity functions, and 

clustering algorithms

• Grouping also useful for quantization, can create 

new  feature summaries

– Texton histograms f or texture within local region

• Example clustering methods

– K-means (and EM)

– Mean shif t

– Graph cut, normalized cuts
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Now: Fitting

• Want to associate a model with observ ed f eatures

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Fitting: Main idea

• Choose a parametric model to represent a 

set of features

• Membership criterion is not local
• Can’t tell whether a point belongs to a given model just by 

looking at that point

• Three main questions:
• What model represents this set of features best?

• Which of several model instances gets which feature?

• How many model instances are there?

• Computational complexity is important
• It is infeasible to examine every possible set of parameters 

and every possible combination of features

Slide credit: L. Lazebnik

Example: Line fitting

• Why  f it lines?  

Many  objects characterized by  presence of  straight lines

• Wait, why  aren’t we done just by  running edge detection?
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• Extra edge points (clutter), 

multiple models:

– which points go with which 

line, if any?

• Only  some parts of  each line 

detected, and some parts 

are missing:

– how to find a line that bridges 

missing evidence?

• Noise in measured edge 

points, orientations:

– how to detect true underlying 
parameters?

Difficulty of line fitting

Voting

• It’s not f easible to check all combinations of  f eatures by  

f itting a model to each possible subset.

• Voting is a general technique where we let the f eatures 

vote for all models that are compatible with it .

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter f eatures will cast v otes too, but ty pically  

their v otes should be inconsistent with the majority  of  

“good” f eatures.

Fitting lines: Hough transform

• Giv en points that belong to a line, what 

is the line?

• How many  lines are there?

• Which points belong to which lines?

• Hough Transform is a v oting 

technique that can be used to answer 

all of  these questions.

Main idea: 

1.  Record v ote f or each possible line 

on which each edge point lies.

2.  Look f or lines that get many  v otes .
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Finding lines in an image: Hough space

Connection between image (x,y ) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y ) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz

Finding lines in an image: Hough space

What are the line parameters f or the line that contains both 

(x0, y 0) and (x1, y 1)?

• It is the intersection of the lines b = –x0m + y0 and 
b = –x1m + y1

x

y

m

b

image space Hough (parameter) space

x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)
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Finding lines in an image: Hough algorithm

How can we use this to f ind the most likely  parameters (m,b) 

f or the most prominent line in the image space?

• Let each edge point in image space vote f or a set of  

possible parameters in Hough space

• Accumulate v otes in discrete set of  bins; parameters with 

the most v otes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Polar representation for lines

: perpendicular distance 

f rom line to origin

: angle the perpendicular 
makes with the x-axis

Point in image space  sinusoid segment in Hough space

dyx   sincos

d



[0,0]

d



x

y

Issues with usual (m,b) parameter space: can take on 

inf inite v alues, undef ined f or v ertical lines.

Image columns

Im
a

g
e

 r
o

w
s

Hough transform algorithm

Using the polar parameterization:

Basic Hough transf orm algorithm

1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image

for  = [min to  max ]  // some quantization

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is maximum

4. The detected line in the image is given by

H: accumulator array (votes)

d



Time complexity  (in terms of  number of  v otes per pt)?

dyx   sincos

Source: Steve Seitz

 sincos yxd 

 sincos yxd 
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Original image Canny edges

Vote space and top peaks

Showing longest segments found

Impact of noise on Hough

Image space

edge coordinates

Votes

x

y d

What dif f iculty does this present f or an implementation?
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Image space

edge coordinates

Votes

Impact of noise on Hough

Here, ev ery thing appears to be “noise”, or random 

edge points, but we still see peaks in the v ote space.

Extensions

Extension 1:  Use the image gradient

1. same

2. for each edge point I[x,y] in the image

 = gradient at (x,y)

H[d, ] += 1

3. same

4. same

(Reduces degrees of freedom)

Extension 2

• give more votes for stronger edges

Extension 3

• change the sampling of (d, ) to give more/less resolution

Extension 4

• The same procedure can be used with circles, squares, or any 
other shape

 sincos yxd 

Extensions

Extension 1:  Use the image gradient

1. same

2. for each edge point I[x,y] in the image

compute unique (d, ) based on image gradient at (x,y)

H[d, ] += 1

3. same

4. same

(Reduces degrees of freedom)

Extension 2

• give more votes for stronger edges (use magnitude of gradient)

Extension 3

• change the sampling of (d, ) to give more/less resolution

Extension 4

• The same procedure can be used with circles, squares, or any 

other shape…

Source: Steve Seitz
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Hough transform for circles

• For a f ixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space a

b

Hough transform for circles

• For a f ixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space

Intersection: 
most votes for 

center occur 
here.

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

?
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Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

θ

x

Hough transform for circles

For every edge pixel (x,y) : 

For each possible radius value r:

For each possible gradient direction θ: 

// or use estimated gradient at (x,y)

a = x – r cos(θ) // column

b = y + r sin(θ)  // row

H[a,b,r] += 1

end

end

• Check out online demo : http://www.markschulze.net/java/hough/

Time complexity per edgel?

http://www.markschulze.net/java/hough/
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Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a dif f erent Hough transf orm (with separate accumulators) 

was used f or each circle radius (quarters v s. penny ).

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

Example: iris detection

• Hemerson Pistori and Eduardo Rocha Costa 
http://rsbweb.nih.gov/ij/plugins/hough-circles.html

Gradient+threshold Hough space 
(fixed radius)

Max detections
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Example: iris detection

• An Iris Detection Method Using the Hough Transform and Its Evaluation for 
Facial and Eye Movement, by Hideki Kashima, Hitoshi Hongo, Kunihito

Kato, Kazuhiko Yamamoto, ACCV 2002.

Voting: practical tips

• Minimize irrelevant tokens f irst

• Choose a good grid / discretization

• Vote for neighbors, also (smoothing in 

accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back w hich points voted for “w inning” 

peaks, keep tags on the votes.

Too coarseToo fine ?

Hough transform: pros and cons

Pros

• All points are processed independently , so can cope with 

occlusion, gaps

• Some robustness to noise: noise points unlikely  to 

contribute consistently to any  single bin

• Can detect multiple instances of  a model in a single pass

Cons

• Complexity  of  search time increases exponentially  with 

the number of  model parameters 

• Non-target shapes can produce spurious peaks in 

parameter space

• Quantization: can be tricky  to pick a good grid size
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Generalized Hough Transform

Model image Vote spaceNovel image

xx
x

x

x

Now  suppose those colors encode gradient 

directions…

• What if w e w ant to detect arbitrary shapes?

Intuition:

Ref. point

Displacement 
vectors

• Define a model shape by its boundary points 

and a reference point.

[Dana H. Ballard, Generaliz ing the Hough Transform to Detect Arbitrary Shapes, 1980]

x a

p1

θ

p2
θ

At each boundary point, 

compute displacement 

vector: r = a – pi.

Store these vectors in a 

table indexed by 

gradient orientation θ.

Generalized Hough Transform

Offline procedure: 

Model shape

θ

θ

…

…

…

p1

θ θ

For each edge point:

• Use its gradient orientation θ

to index into stored table 

• Use retriev ed r v ectors to 

v ote f or ref erence point

Generalized Hough Transform

Detection procedure: 

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

x

θ θ

Novel image

θ

θ

…

…

…

θ

xx

xx
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Generalized Hough for object detection

• Instead of indexing displacements by gradient 

orientation, index by matched local patterns.

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model , ECCV Workshop on Statistical 

Learning in Computer Vision 2004

training image

“visual codeword” with
displacement vectors

Source: L. Lazebnik

• Instead of indexing displacements by gradient 

orientation, index by “visual codew ord”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model , ECCV Workshop on Statistical 

Learning in Computer Vision 2004

test image

Source: L. Lazebnik

Generalized Hough for object detection

Summary

• Grouping/segmentation useful to make a compact 

representation and merge similar f eatures

– associate features based on defined similarity measure and 
clustering objective

• Fitting problems require f inding any  supporting ev idence 

f or a model, ev en within clutter and missing f eatures.

– associate features with an explicit model

• Voting approaches, such as the Hough transform, 

make it possible to f ind likely  model parameters without 

searching all combinations of  f eatures.

– Hough transform approach for lines, circles, …, arbitrary shapes 

defined by a set of boundary points, recognition from patches.

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Coming up

Fitting w ith deformable contours

A2 is out, due in tw o w eeks


