

Fitting: Voting and the Hough Transform

Thurs Sept 24 Kristen Grauman UT Austin

Last time

- · What are grouping problems in vision?
- Inspiration from human perception
 Gestalt properties
- · Bottom-up segmentation via clustering
 - Algorithms:
 - Mode finding and mean shift: k-means, mean-shift
 - Graph-based: normalized cuts
 - Features: color, texture, ...
 - · Quantization for texture summaries

Normalized cuts: pros and cons

Pros:

- Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- · Does not require model of the data distribution

Cons:

- Time complexity can be high
 - Dense, highly connected graphs → many affinity computations
 Solving signature architem
 - Solving eigenvalue problem
- Preference for balanced partitions

Recap on grouping

- Segmentation to find object boundaries or midlevel regions, tokens.
- · Bottom-up segmentation via clustering
 - General choices -- features, affinity functions, and clustering algorithms
- Grouping also useful for quantization, can create new feature summaries
 - Texton histograms for texture within local region
- · Example clustering methods
 - K-means (and EM)
 - Mean shift
 - Graph cut, normalized cuts

Fitting: Main idea

- Choose a parametric model to represent a set of features
- · Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
 - What model represents this set of features best?
 - · Which of several model instances gets which feature?
 - · How many model instances are there?
- · Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Slide credit L. Lazebnik

Example: Line fitting

• Why fit lines?

Many objects characterized by presence of straight lines

• Wait, why aren't we done just by running edge detection?

Difficulty of line fitting

Extra edge points (clutter), multiple models:

which points go with which line, if any?Only some parts of each line

- detected, and some parts are **missing:** - how to find a line that bridges
- missing evidence?
- Noise in measured edge points, orientations:
 - how to detect true underlying parameters?

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but ty pically their votes should be inconsistent with the majority of "good" features.

Fitting lines: Hough transform

- Giv en points that belong to a line, what is the line?
- · How many lines are there?
- · Which points belong to which lines?

Hough Transform is a voting technique that can be used to answer all of these questions. <u>Main idea</u>:

- 1. Record vote for each possible line on which each edge point lies.
- 2. Look for lines that get many votes.

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image
- compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1
- 3. same
- 4. same
- (Reduces degrees of freedom)

Extension 2

- give more votes for stronger edges (use magnitude of gradient) Extension $\,3\,$
- change the sampling of (d, $\theta)$ to give more/less resolution

Extension 4

The same procedure can be used with circles, squares, or any other shape...

Source: Steve Seitz

 Hemerson Pistori and Eduardo Rocha Costa http://rsbweb.nih.gov/ij/plugins/hough-circles.html

Voting: practical tips

- · Minimize irrelevant tokens first
- Choose a good grid / discretization
 <u>Too fine ? Too coarse</u>
- Vote for neighbors, also (smoothing in accumulator array)
- · Use direction of edge to reduce parameters by 1
- To read back w hich points voted for "w inning" peaks, keep tags on the votes.

Hough transform: pros and cons

Pros

- All points are processed independently, so can cope with occlusion, gaps
- Some robustness to noise: noise points unlikely to contribute *consistently* to any single bin
- · Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- · Quantization: can be tricky to pick a good grid size

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Detection procedure:

For each edge point:

- Use its gradient orientation θ to index into stored table
- Use retrieved **r** vectors to vote for reference point

Novel image

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Generalized Hough for object detection

• Instead of indexing displacements by gradient orientation, index by matched local patterns.

Source: L. Lazebnik

Summary

- Grouping/segmentation useful to make a compact representation and merge similar features
 associate features based on defined similarity measure and clustering objective
- Fitting problems require finding any supporting evidence for a model, even within clutter and missing features.
 – associate features with an explicit model
- Voting approaches, such as the Hough transform, make it possible to find likely model parameters without searching all combinations of features.
 - Hough transform approach for lines, circles, ..., arbitrary shapes defined by a set of boundary points, recognition from patches.

Coming up

Fitting with deformable contours A2 is out, due in two weeks

