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Local invariant feature 
detection

Thurs Feb 23
Kristen Grauman

UT Austin

• Fitting an arbitrary shape with “active” 
deformable contours

Last time
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Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

Figure credit: Yuri Boykov

Goal: evolve the contour to fit exact object boundary   

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Main idea: elastic band is 
iteratively adjusted so as to

• be near image positions with 
high gradients, and

• satisfy shape “preferences” or 
contour priors

Deformable contours: intuition

Image from http://www.healthline.com/blogs/exercise_fitness/uploaded_images/HandBand2-795868.JPG Slide credit: Kristen Grauman
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• May over-smooth the boundary

• Cannot follow topological changes of objects

Limitations

Limitations
• External energy: snake does not really “see” object 

boundaries in the image unless it gets very close to it.

image gradients
are large only directly on the boundary

I
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Distance transform

• External image can instead be taken from the distance 
transform of the edge image. 

original -gradient distance transform

edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 
binary mage structure) 

>> help bwdistSlide credit: Kristen Grauman

Aspects we need to consider

• Representation of the contours

• Defining the energy functions
– External

– Internal

• Minimizing the energy function

• Extensions:
– Tracking

– Interactive segmentation
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Tracking via deformable contours

1. Use final contour/model extracted at frame  t as 
an initial solution for frame t+1

2. Evolve initial contour to fit exact object boundary 
at frame t+1

3. Repeat, initializing with most recent frame.

Tracking Heart Ventricles 
(multiple frames)

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer assisted diagnosis in medical imaging 

Applications:

Tracking via deformable contours

http://www.robots.ox.ac.uk/~vdg/
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3D active contours
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Interactive forces

How can we implement such an interactive
force with deformable contours?

Slide credit: Kristen Grauman
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Interactive forces

• An energy function can be altered online based 
on user input – use the cursor to push or pull the 
initial snake away from a point. 

• Modify external energy term to include:
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Nearby points get pushed hardest

Intelligent scissors

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Another form of 
interactive 
segmentation:

Compute optimal paths 
from every point to 
the seed based on 
edge-related costs.

VIDEO
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• http://rivit.cs.byu.edu/Eric/Eric.html

Intelligent scissors

Deformable contours: pros and cons

Pros:
• Useful to track and fit non-rigid shapes

• Contour remains connected

• Possible to fill in “subjective” contours

• Flexibility in how energy function is defined, weighted.

Cons:
• Must have decent initialization near true boundary, may 

get stuck in local minimum

• Parameters of energy function must be set well based on 
prior information

Slide credit: Kristen Grauman
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Recap: Deformable contours

• Deformable shapes and active contours are useful for

– Segmentation: fit or “snap” to boundary in image

– Tracking: previous frame’s estimate serves to initialize the next

• Fitting active contours:

– Define terms to encourage certain shapes, smoothness, low 
curvature, push/pulls, …

– Use weights to control relative influence of each component cost 

– Can optimize 2d snakes with Viterbi algorithm.

• Image structure (esp. gradients) can act as attraction 
force for interactive segmentation methods.

Slide credit: Kristen Grauman

Previously: Features and filters

Transforming and 
describing images; 
textures, colors, edges

Slide credit: Kristen Grauman
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Previously: Grouping & fitting

[fig from Shi et al]

Clustering, 
segmentation, 
fitting; what parts 
belong together?

Slide credit: Kristen Grauman

Now: Multiple views

Hartley and Zisserman

Lowe

Matching, invariant features, 
stereo vision, instance 
recognition

Fei-Fei Li

Slide credit: Kristen Grauman
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Important tool for multiple views: Local features

How to detect which local features to match?

Multi-view matching relies on local feature 
correspondences.

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
11 dxx x

],,[ )2()2(
12 dxx x

Slide credit: Kristen Grauman
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Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!

Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

• Must provide some invariance to geometric 
and photometric differences between the two 
views.

?
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

• What points would you choose?

Slide credit: Kristen Grauman



2/22/2017

14

Detecting corners

Slide credit: Kristen Grauman

Compute “cornerness” response at every pixel.

Detecting corners

Slide credit: Kristen Grauman
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Detecting corners

Slide credit: Kristen Grauman

Detecting local invariant 
features

• Detection of interest points
– Harris corner detection

– Scale invariant blob detection: LoG

• (Next time: description of local patches)
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Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:
no change along 
the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:
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First, consider an axis-aligned corner:

What does this matrix reveal?
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First, consider an axis-aligned corner:

This means dominant gradient directions align with 
x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.

What does this matrix reveal?

What if we have a corner that is not aligned with the 
image axes? 
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What does this matrix reveal?

Since M is symmetric, we have TXXM 
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The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.

Corner response function

“flat” region

1 and 2 are 
small;

“edge”:

1 >> 2

2 >> 1

“corner”:

1 and 2 are large,
1 ~ 2;

Cornerness score 
(other variants possible) 
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Harris corner detector

1) Compute M matrix for each image window to 
get their cornerness scores.

2) Find points whose surrounding window gave 
large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 
non-maximum suppression

Harris Detector: Steps
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Harris Detector: Steps
Compute corner response f

Harris Detector: Steps
Find points with large corner response: f > threshold
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Harris Detector: Steps
Take only the points of local maxima of f

Harris Detector: Steps
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Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

TXXM 
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Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

All points will be 
classified as edges

Corner !

Yes

No
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Scale invariant interest points

How can we independently select interest points in 
each image, such that the detections are repeatable 
across different scales?

Automatic Scale Selection

K. Grauman, B. Leibe

How to find corresponding patch sizes, 
with only one image in hand?
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Automatic scale selection

Intuition: 
• Find scale that gives local maxima of some function 

f in both position and scale.

f

region size

Image 1
f

region size

Image 2

s1 s2

Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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What can be the “signature” function?
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = “blob” detector
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Blob detection in 2D

We define the characteristic scale as the scale 
that produces peak of Laplacian response

characteristic scale

Slide credit: Lana Lazebnik

Example

Original image 
at ¾ the size

Slide credit: Kristen Grauman



2/22/2017

30

Original image 
at ¾ the size

Scaled down image

Original image

Slide credit: Kristen Grauman

Scaled down image

Original image

Slide credit: Kristen Grauman
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Scaled down image

Original image

Slide credit: Kristen Grauman

Scaled down image

Original image

Slide credit: Kristen Grauman
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Scaled down image

Original image

Slide credit: Kristen Grauman

Scaled down image

Original image

Slide credit: Kristen Grauman
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Scale invariant interest points

Interest points are local maxima in both position 
and scale.

Squared filter 
response maps

Slide credit: Kristen Grauman

Scale-space blob detector: Example

T. Lindeberg.  Feature detection with automatic scale selection.  IJCV 1998.
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Scale-space blob detector: Example

Image credit: Lana Lazebnik

We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement.

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Technical detail
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Summary

• Desirable properties for local features for 
correspondence

• Basic matching pipeline

• Interest point detection
– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
11 dxx x

],,[ )2()2(
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NEXT TIME


