Local features: detection and description

Kristen Grauman
UT Austin
Tues Feb 27

Announcements

• Reminder: Slides posted on course webpage
• Midterm next Thursday Mar 9
 – Closed book
 – One 8.5x11” sheet of notes allowed
Multiple views

Matching, invariant features, stereo vision, instance recognition

Hartley and Zisserman

Lowe

Fei-Fei Li

Slide credit: Kristen Grauman

Important tool for multiple views: Local features

Multi-view matching relies on **local feature** correspondences.

How to **detect** which local features to match?

How to **describe** the features we detect?
Review questions

• What properties should an interest operator have?
• What will determine how many interest points a given image has?
• What does it mean to have multiple local maxima at a single pixel during LoG scale space selection?

Outline

• Last time: Interest point detection
 – Harris corner detector
 – Laplacian of Gaussian, automatic scale selection
• Today: Local descriptors and matching
 – SIFT descriptors for image patches
 – Matching sets of features
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

\[x_1 = [x^{(1)}_1, \ldots, x^{(1)}_d] \]

\[x_2 = [x^{(2)}_1, \ldots, x^{(2)}_d] \]

3) Matching: Determine correspondence between descriptors in two views

Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.

- Yet we have to be able to run the detection procedure *independently* per image.

No chance to find true matches!
Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

• Must provide some invariance to geometric and photometric differences between the two views.

Recall: Harris corner detector

\[M = \sum w(x, y) \begin{bmatrix} I_xI_x & I_xI_y \\ I_yI_x & I_yI_y \end{bmatrix} \]

1) Compute \(M \) matrix for each image window to get their cornerness scores.
2) Find points whose surrounding window gave large corner response (> threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression
Recall: Harris Detector: Steps

Compute corner response f
Recall: Harris Detector: Steps

Find points with large corner response: \(f > \) threshold

Recall: Harris Detector: Steps

Take only the points of local maxima of \(f \)
Recall: Harris Detector: Steps

Recall: Automatic scale selection

Intuition:
- Find scale that gives local maxima of some function f in both position and scale.
Recall: Blob detection for scale selection

Laplacian-of-Gaussian = "blob" detector

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}
$$

Recall: Scale invariant interest points

Interest points are local maxima in both position and scale.

Squared filter response maps

$$L_{x}(\sigma) + L_{y}(\sigma) \rightarrow (x, y, \sigma)$$

⇒ List of

(x, y, σ)
Example

Original image at ¾ the size

Slide credit: Kristen Grauman
Scale-space blob detector: Example

Image credit: Lana Lazebnik
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Geometric transformations

Slide credit: Kristen Grauman
Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial

Raw patches as local descriptors

The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector.

But this is very sensitive to even small shifts, rotations.

Figure: Andrew Zisserman
Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]

- Use histograms to bin pixels within sub-patches according to their orientation.

Slide credit: Kristen Grauman

http://www.vlfeat.org/overview/sift.html
Making descriptor rotation invariant

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

SIFT descriptor [Lowe 2004]

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available, e.g. http://www.vlfeat.org/overview/sift.html

Slide credit: Steve Seitz
Example

NASA Mars Rover images

Example

NASA Mars Rover images

with SIFT feature matches
Figure by Noah Snavely
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Matching local features

Slide credit: Kristen Grauman
Matching local features

To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)

Ambiguous matches

At what SSD value do we have a good match?

To add robustness to matching, consider **ratio**:

\[
\text{ratio} = \frac{\text{dist to best match}}{\text{dist to second best match}}
\]

If **low**, first match looks good.

If **high**, could be ambiguous match.
Matching SIFT Descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]

Slide credit: Kristen Grauman http://www.vlfeat.org/overview/sift.html
SIFT (preliminary) matches

Value of local (invariant) features

- Complexity reduction via selection of distinctive points
- Describe images, objects, parts without requiring segmentation
 - Local character means robustness to clutter, occlusion
- Robustness: similar descriptors in spite of noise, blur, etc.

Slide credit: Kristen Grauman http://www.vlfeat.org/overview/sift.html
Applications of local invariant features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
- ...

Automatic mosaicing

Matthew Brown
http://matthewalunbrown.com/autostitch/autostitch.html
Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Photo tourism [Snavely et al.]
Recognition of specific objects, scenes

Scale

Viewpoint

Lighting

Occlusion

Google Goggles
Summary

• Interest point detection
 – Harris corner detector
 – Laplacian of Gaussian, automatic scale selection

• Invariant descriptors
 – Rotation according to dominant gradient direction
 – Histograms for robustness to small shifts and translations (SIFT descriptor)

Coming up

Additional questions we need to address to achieve these applications:
• Fitting a parametric transformation given putative matches
• Dealing with outlier correspondences
• Exploiting geometry to restrict locations of possible matches
• Triangulation, reconstruction
• Efficiency when indexing so many keypoints
Coming up: robust feature-based alignment

- Extract features

Source: L. Lazebnik
Coming up: robust feature-based alignment

• Extract features
• Compute putative matches

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:
 • Hypothesize transformation \(T \) (small group of putative matches that are related by \(T \))

Source: L. Lazebnik
Coming up: robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - **Hypothesize** transformation T (small group of putative matches that are related by T)
 - **Verify** transformation (search for other matches consistent with T)

Source: L. Lazebnik