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Fitting a transformation:
feature-based alignment

Kristen Grauman
UT Austin

Thurs Mar 2

Previously

• Interest point detection
– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

• Invariant descriptors
– Rotation according to dominant gradient direction

– Histograms for robustness to small shifts and 
translations (SIFT descriptor)

Multi-view: what’s next
Additional questions we need to address to achieve 

these applications:

• Fitting a parametric transformation given putative 
matches

• Dealing with outlier correspondences

• Exploiting geometry to restrict locations of possible 
matches

• Triangulation, reconstruction

• Efficiency when indexing so many keypoints
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Motivation: Recognition 

Figure from David Lowe

Motivation: medical image 
registration

Motivation: mosaics

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/
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• Extract features

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik

Coming up: robust feature-based alignment
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• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Coming up: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Coming up: robust feature-based alignment

Now

• Feature-based alignment
– 2D transformations

– Affine fit

– RANSAC for robust fitting
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Alignment as fitting
• Previous lectures: fitting a model to features in one image

• Alignment: fitting a transformation between pairs of 
features (matches) in two images


i

i Mx ),(residual

 
i

ii xxT )),((residual
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Find transformation T
that minimizes

M

xi

T

xi
xi'

Adapted from: Lana Lazebnik

Parametric (global) warping
Examples of parametric warps:

translation rotation aspect

affine
perspective

Source: Alyosha Efros

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Source: Alyosha Efros
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Scaling
Scaling a coordinate means multiplying each of its components by 

a scalar
Uniform scaling means this scalar is the same for all components:

 2

Source: Alyosha Efros

Non-uniform scaling: different scalars per component:

Scaling

X  2,
Y  0.5

Source: Alyosha Efros

Scaling

Scaling operation:

Or, in matrix form:

byy

axx
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scaling matrix S

Source: Alyosha Efros
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What transformations can be 
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
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2D Shear?
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Source: Alyosha Efros

2D Scaling?
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What transformations can be 
represented with a 2x2 matrix?

Source: Alyosha Efros

2D Mirror about Y axis?

yy
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2D Mirror over (0,0)?
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2D Translation?
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2D Linear Transformations

Only linear 2D transformations can be represented with a 2x2 
matrix.

Linear transformations are combinations of …
• Scale,
• Rotation,
• Shear, and
• Mirror
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Source: Alyosha Efros
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Homogeneous coordinates

homogeneous image 
coordinates

Converting from homogeneous coordinates

To convert to homogeneous coordinates:

Homogeneous Coordinates
Q: How can we represent 2d translation as a 3x3 matrix 

using homogeneous coordinates?

A: Using the rightmost column:


















100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx





'

'

Source: Alyosha Efros
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Basic 2D Transformations
Basic 2D transformations as 3x3 matrices
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Source: Alyosha Efros

2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Today

• Feature-based alignment
– 2D transformations

– Affine fit

– RANSAC for robust fitting
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Alignment problem

• We have previously considered how to fit a model to 
image evidence
– e.g., a line to edge points, or a snake to a deforming contour

• In alignment, we will fit the parameters of some 
transformation according to a set of matching feature 
pairs (“correspondences”).

T

xi
xi

'

Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment
• Search for alignment where extracted features agree

• Can be verified using pixel-based alignment

Let’s start with affine transformations
• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly planar 
objects and roughly orthographic cameras

• Can be used to initialize fitting for more complex 
models

Slide credit: Lana Lazebnik
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Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?
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An aside: Least Squares Example
Say we have a set of data points (X1,X1’), (X2,X2’), 

(X3,X3’), etc.  (e.g. person’s height vs. weight)

We want a nice compact formula (a line) to predict X’s 
from Xs:  Xa + b = X’

We want to find a and b

How many (X,X’) pairs do we need?

What if the data is noisy?
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Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation

• How many matches (correspondence pairs) do we 
need to solve for the transformation parameters?

• Once we have solved for the parameters, how do we 
compute the coordinates of the corresponding point 
for                      ? 

• Where do the matches come from?
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http://www.vlfeat.org/overview/sift.html

Interest points and their 
scales and orientations
(random subset of 50)

SIFT descriptors

Recall: Scale Invariant Feature Transform 
(SIFT) descriptor [Lowe 2004] 

Kristen Grauman

Recall: SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html Kristen Grauman
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Fitting an affine transformation

Figures from David Lowe, ICCV 1999

Affine  model approximates perspective projection of 
planar objects.

Today

• Feature-based alignment
– 2D transformations

– Affine fit

– RANSAC for robust fitting

Recall: SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html

Not all of these 
are valid 
matches!

Kristen Grauman
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Outliers
• Outliers can hurt the quality of our parameter 

estimates, e.g., 
– an erroneous pair of matching points from two images

– an edge point that is noise, or doesn’t belong to the 
line we are fitting.

Kristen Grauman

Outliers affect least squares fit

Outliers affect least squares fit
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RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line (transformation) 
won’t have much support from rest of the points
(matches).

Kristen Grauman

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 
points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

53

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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How many trials for RANSAC?

To ensure good chance of finding true inliers, need 
sufficient number of trials, S.

Let p be probability that any given match is valid

Let P be to the total prob of success after S trials.

Likelihood in one trial that all k random samples are 
inliers is pk

Likelihood that all S trials will fail is 

1-P = (1-pk)S

Required minimum number of trials is

S = log(1-P)  /  log(1-pk)

Kristen Grauman

How many trials for RANSAC?

To ensure good chance of finding true inliers, need 
sufficient number of trials, S.

Let p be probability that any given match is valid

Let P be to the total prob of success after S trials.

Likelihood in one trial that all k random samples are 
inliers is pk

Likelihood that all S trials will fail is 

1-P = (1-pk)S

Required minimum number of trials is

S = log(1-P)  /  log(1-pk)

k p S

3 0.5 35

6 0.6 97

6 0.5 293

Kristen Grauman

RANSAC song – danielwedge.com

When you have outliers you may face much frustration
if you include them in a model fitting operation.
But if your model's fit to a sample set of minimal size,
the probability of the set being outlier-free will rise.
Brute force tests of all sets will cause computational constipation.

N random samples
will provide an example
of a fitted model uninfluenced by outliers. No need to test all combinations!

Each random trial should have its own unique sample set
and make sure that the sets you choose are not degenerate.
N, the number of sets, to choose is based on the probability
of a point being an outlier, and of finding a set that's outlier free.
Updating N as you go will minimise the time spent.

So if you gamble
that N samples are ample
to fit a model to your set of points, it's likely that you will win the bet.

Select the set that boasts
that its number of inliers is the most (you're almost there).
Fit a new model just to those inliers and discard the rest,
an estimated model for your data is now possessed!
This marks the end point of your model fitting quest
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That is an example fitting a model 

(line)…

What about fitting a transformation 
(translation)?

RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group on which to base 
transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of transformation on all of the inliers

• Keep the transformation with the largest number of 
inliers

RANSAC example: Translation

Putative matches

Source: Rick Szeliski
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector
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RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Parameters to tune

• Doesn’t work well for low inlier ratios (too many iterations, 
or can fail completely)

• Can’t always get a good initialization 
of the model based on the minimum 
number of samples

Slide credit: Lana Lazebnik

Coming up: 
alignment and image stitching


