

Outline

- · Last time:
 - Human stereopsis
 - Epipolar geometry and the epipolar constraint
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Today:
 - Stereo solutions
 - Correspondences
 - Additional constraints

Review questions

- Why perform rectification for stereo?
- What are the "extrinsic" camera parameters relating two stereo cameras?

Review questions

- Why perform rectification for stereo?
- What are the "extrinsic" camera parameters relating two stereo cameras?
- What's the result of convolving a disparity map with [-1 1]?

Outline

- Last time:
 - Human stereopsis
 - Epipolar geometry and the epipolar constraint
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Today:
 - Stereo solutions
 - Correspondences
 - Additional constraints

Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
 - Similarity
 - Uniqueness
 - Ordering
 - Disparity gradient
- To find matches in the image pair, we will assume
 - Most scene points visible from both views
 - Image regions for the matches are similar in
 - appearance

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points

 Similarity
 - Uniqueness
 - Disparity gradient
 - Ordering

Beyond matched pairs

Optimize correspondence assignments jointly

 Scanline at a time (DP)
 Full 2D grid (graph cuts)

Error sources

- · Low-contrast ; textureless image regions
- Occlusions
- Camera calibration errors
- Violations of *brightness constancy* (e.g., specular reflections)
- Large motions

Video examples

- <u>https://www.youtube.com/watch?v=sz0Ub</u> <u>HvEttl</u>
- <u>https://www.youtube.com/watch?v=kelirXr</u> <u>Rb1k</u>
- <u>https://www.youtube.com/watch?v=1dT9G</u> <u>wx1gVM</u>
- <u>https://www.youtube.com/watch?v=cizgVZ</u> <u>8rjKA</u>

Summary

- Depth from stereo: main idea is to triangulate from corresponding image points.
- Epipolar geometry defined by two cameras

 We've assumed known extrinsic parameters relating their poses
- Epipolar constraint limits where points from one view will be imaged in the other
 - Makes search for correspondences quicker
- · To estimate depth
 - Limit search by epipolar constraint
 - Compute correspondences, incorporate matching preferences

Coming up

- Instance recognition
 - Indexing local features efficiently
 Spatial verification models

