

Instance recognition

Indexing local features efficiently (last time)
 Spatial verification models

Picking up from last time

• Instance recognition wrap up:

- Impact of vocabulary tree
- Spatial verification
- Sky mapping example
- Query expansion

Query expansion

Query: golf green

Results:

How can the grass on the greens at a golf course be so perfect?
For example, a skilled golfer expects to reach the green on a par-four hole in ...
Manufactures and sells synthetic golf putting greens and mats.

Irrelevant result can cause a `topic drift':

Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles,
 2.0 GTi, 2 Registered Keepers, HPI Checked, Air-Conditioning, Front and Rear
 Parking Sensors, ABS, Alarm, Alloy

Slide credit: Ond

Slide credit: Ondrei O

0.4

Query image

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?

Slide credit: Kristen Graumar

· How to score the retrieval results?

Proportional and the second statement of the second st

Bags of words: pros and cons

- + flexible to geometry / deformations / viewpoint
- + compact summary of image content
- + provides vector representation for sets
- + very good results in practice
- basic model ignores geometry must verify afterwards, or encode via features
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

Slide credit: Kristen Graum

Slide credit: Kristen Grauma

Spatial Verification: two basic strategies

- RANSAC
 - Typically sort by BoW similarity as initial filter
 - Verify by checking support (inliers) for possible transformations
 - e.g., "success" if find a transformation with > N inlier correspondences
- Generalized Hough Transform
 - Let each matched feature cast a vote on location, scale, orientation of the model object
 - Verify parameters with enough votes

Spatial Verification: two basic strategies

RANSAC

- Typically sort by BoW similarity as initial filter
- Verify by checking support (inliers) for possible transformations
 - e.g., "success" if find a transformation with > N inlier correspondences

Generalized Hough Transform

- Let each matched feature cast a vote on location, scale, orientation of the model object
- Verify parameters with enough votes

Voting: Generalized Hough Transform

- A hypothesis generated by a single match may be unreliable,
- + So let each match ${\color{black} \textbf{vote}}$ for a hypothesis in Hough space

Model

Novel image

Gen Hough Transform details (Lowe's system)

- **Training phase:** For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- **Test phase:** Let each match btwn a test SIFT feature and a model feature vote in a 4D Hough space
- Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
- · Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
 - Estimate least squares *affine* transformation
 - · Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints." J/CV 60 (2), pp. 91-110, 2004. Slide credit: Lana Lazebn

Recall: difficulties of voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

Example result

Background subtract for model boundaries Objects recognized, Recognition in

[Lowe]

spite of occlusion

Gen Hough vs RANSAC

<u>GHT</u>

- Single correspondence -> vote for all consistent • parameters
- Represents uncertainty in the • model parameter space
- Linear complexity in number of correspondences and number of voting cells; beyond 4D vote space impractical
- Can handle high outlier ratio

RANSAC •

- Minimal subset of correspondences to estimate model -> count inliers
- Represents uncertainty • in image space Must search all data
- points to check for inliers each iteration Scales better to high-d
- parameter spaces

Slide credit: Kristen Grauma

Slide credit: Kristen Grauma

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- · How to score the retrieval results?

Kristen Grauman

Recognition via alignment

Pros:

- Effective when we are able to find reliable features within clutter
- Great results for matching specific instances

Cons:

- · Scaling with number of models
- Spatial verification as post-processing not
- seamless, expensive for large-scale problems
- Not suited for category recognition.

Summary

Matching local invariant features

- Useful not only to provide matches for multi-view geometry, but also to find objects and scenes.
- Bag of words representation: quantize feature space to make discrete set of visual words Summarize image by distribution of words
 Index individual words
- Inverted index: pre-compute index to enable faster search at query time
- Recognition of instances via alignment: matching local features followed by spatial verification - Robust fitting : RANSAC, GHT

Kristen Grauman

Coming up

- Mining and visual pattern discovery
- · Category recognition / supervised learning
- Sliding window object detection (Faces!)

