

Last time

- Instance recognition wrap up:
 - Spatial verification
 - Sky mapping example
 - Query expansion

Review questions

- Does an inverted file index sacrifice accuracy in bag-of-words image retrieval? Why or why not?
- Name a pro and con of query expansion.
- Why does a single SIFT match cast a 4D vote for the Generalized Hough spatial verification model?
- What does a perfect precision recall curve look like?

Today

- Discovering visual patterns
 - Randomized hashing algorithms
 - Mining large-scale image collections
- \bullet Introduction to visual categorization

Locality Sensitive Hashing (LSH) [Indyk and Motwani '98, Gionis et al. '99, Charikar '02, Andoni et al. '04] $\Pr_{h \in \mathcal{F}} \left[h(x) = h(y) \right] = sim(x,y)$ Guarantees approximate near neighbors in sub-linear time, given appropriate hash functions.

1
Z

LSH function example: inner product similarity

The probability that a random hyperplane separates two unit vectors depends on the angle between them:

$$\Pr[\operatorname{sign}(\boldsymbol{x}_i^T\boldsymbol{r}) = \operatorname{sign}(\boldsymbol{x}_j^T\boldsymbol{r})] = 1 - \frac{1}{\pi} \operatorname{cos}^{-1}(\boldsymbol{x}_i^T\boldsymbol{x}_j)$$

Corresponding hash function:

$$h_{\boldsymbol{r}}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \boldsymbol{r}^T \boldsymbol{x} \ge 0\\ 0, & \text{otherwise} \end{cases}$$

for
$$\vec{r_i} \sim N(\mu=0,\sigma^2=1)$$

[Goemans and Williamson 1995, Charikar 2004]

LSH function example: Min-hash for set overlap similarity

[Broder, 1999]

$$\Pr_{h \in \mathcal{F}} [h(x) = h(y)] = sim(x, y)$$

$$sim(\mathcal{A}_1, \mathcal{A}_2) = \frac{|\mathcal{A}_1 \cap \mathcal{A}_2|}{|\mathcal{A}_1 \cup \mathcal{A}_2|} \in \langle 0, 1 \rangle$$

Kristen Grauman

LSH function example: Min-hash for set overlap similarity

	vocai	Julai	,	
_				

Set A

Random orderings						
						4

0500	0,400	0.03	
6	4	5	
6	1	2	

	•
B	E

ove	rlap	(A	, <mark>B</mark>) =	3/4	(1/2)	

f₃: 3 2 1 f₄: 4 3 5

> overlap (A,C) = 1/4 (1/5) [Broder, 1999]

overlap (B,C) = 0 (0)

Multiple hash functions and tables

• Generate k such hash functions, concatenate outputs into hash key:

$$P(h_{1,...,k}(x) = h_{1,...,k}(y)) =$$

- To increase recall, search multiple independently generated hash tables 110111
 - Search/rank the union of collisions in each table, or
 - of the tables to consider them similar.

Require that two examples in at least T

Kristen Grauman

Mining for common visual patterns

In addition to visual search, want to be able to summarize, mine, and rank the large collection as a whole.

- · What is common?
- · What is unusual?
- · What co-occurs?
- · Which exemplars are most representative?

Kristen Grauman

Mining for common visual patterns

In addition to visual search, want to be able to **summarize**, **mine**, **and rank** the large collection as a whole.

We'll look at a few examples:

- Connected component clustering via hashing
- Visual Rank to choose "image authorities"
- Frequent item-set mining with spatial patterns

Kristen Grauman

Connected component clustering with hashing

- 1. Detect seed pairs via hash collisions
- 2. Hash to related images
- 3. Compute connected components of the graph

Contrast with frequently used quadratic-time clustering algorithms

Geometric Min-hash

[Chum, Perdoch, Matas, CVPR 2009]

(F)(B)(E

- Main idea: build spatial relationships into the hash key construction:
 - Select first hash output according to min hash ("central word")
 - Then append subsequent hash outputs from within its neighborhood

Figure from Ondrej Chum

Mining for common visual patterns

In addition to visual search, want to be able to **summarize**, **mine**, **and rank** the large collection as a whole.

We'll look briefly at a few recent examples:

- Connected component clustering via hashing [Geometric Min-hash, Chum et al. 2009]
- Visual Rank to choose "image authorities" [Jing and Baluja, 2008]
- Frequent item-set mining with spatial patterns [Quack et al., 2007]

Visual Rank: motivation

Goal: select small set of "best" images to display among millions of candidates

Kristen Grauman

Visual Rank

[Jing and Baluja, PAMI 2008]

- Compute relative "authority" of an image based on random walk principle.
 - Application of PageRank to visual data
- Main ideas:
 - Graph weights = number of matched local features between two images
 - Exploit text search to narrow scope of each graph
 - Use LSH to make similarity computations efficient

Kristen Grauman

7

Mining for common visual patterns

In addition to visual search, want to be able to **summarize**, **mine**, **and rank** the large collection as a whole.

We'll look briefly at a few recent examples:

- Connected component clustering via hashing [Geometric Min-hash, Chum et al. 2009]
- Visual Rank to choose "image authorities" [Jing and Baluja, 2008]
- Frequent item-set mining with spatial patterns [Quack et al., 2007]

Frequent item-set mining for spatial visual patterns [Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

- · What configurations of local features frequently occur in large collection?
- Main idea: Identify item-sets (visual word layouts) that often occur in transactions (images)
- Efficient algorithms from data mining (e.g., Apriori algorithm, Agrawal 1993)

Kristen Grauman

Frequent item-set mining for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Kristen Grauman

Frequent item-set mining for spatial visual patterns [Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007] Two example itemset clusters Kristen Grauman

Today

- Discovering visual patterns
 - Randomized hashing algorithms
 - Mining large-scale image collections
- Introduction to visual categorization

Object Categorization

- Task Description
 - "Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label."
- Which categories are feasible visually?

"Fido"

German shepherd .

animal living being

K. Grauman, B. Leibe

Visual Object Categories

- Basic Level Categories in human categorization [Rosch 76, Lakoff 87]
 - The highest level at which category members have similar perceived shape
 - > The highest level at which a single mental image reflects the entire category
 - The level at which human subjects are usually fastest at identifying category members
 - > The first level named and understood by children
 - > The highest level at which a person uses similar motor actions for interaction with category members

K. Grauman, B. Leibe

Visual Object Categories

- Basic-level categories in humans seem to be defined predominantly visually.
- There is evidence that humans (usually) start with basic-level categorization before doing identification.
- before doing identification.

 ⇒ Basic-level categorization is easier and faster for humans than object identification!
- How does this transfer to automatic classification algorithms?

"Fido"

Individual level K. Grauman, B. Leibe

How many object categories are there?

Source: Fei-Fei Li, Rob Fergus, Antonio Torralba

Biederman 1987

Other Types of Categories • Functional Categories • e.g. chairs = "something you can sit on" **Common Number of Categories** **C

Why recognition?

- Recognition a fundamental part of perception
 - e.g., robots, autonomous agents
- Organize and give access to visual content
 - Connect to information
 - Detect trends and themes

Autonomous agents able to detect objects Siide credit: Kristen Grauman Autonomous agents able to detect objects Autonomous agents able to detect objects

Challenges: context and human experience Context cues Slide credit: Kristen Grauman

Challenges: context and human experience			
		Ą	
Context cues	Function	Dynamics	
Slide credit: Kristen Grauman		Video credit: J. Davis	

Challenges: complexity

- Millions of pixels in an image
- 30,000 human recognizable object categories
- 30+ degrees of freedom in the pose of articulated objects (humans)
- · Billions of images online
- 82 years to watch all videos uploaded to YouTube per day!
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991]

Slide credit: Kristen Grauman

Evolution of methods

- Hand-crafted models Hand-crafted features "End-to-end"
- 3D geometry
- Learned models
- learning of features and
- Hypothesize and align Data-driven

- models*,**
- * Labeled data availability

 ** Architecture design decisions, parameters.

Next

• Sliding window object detection (Faces!)

Supervised classification

• Given a collection of *labeled* examples, come up with a function that will predict the labels of new examples.

Training examples

Novel input

- How good is some function we come up with to do the classification?
- Depends on
 - Mistakes made
 - Cost associated with the mistakes

Supervised classification

- Given a collection of labeled examples, come up with a function that will predict the labels of new examples.
- Consider the two-class (binary) decision problem
 - L(4→9): Loss of classifying a 4 as a 9
 - L(9→4): Loss of classifying a 9 as a 4
- Risk of a classifier s is expected loss:

 $R(s) = \Pr(4 \to 9 \mid \text{using } s)L(4 \to 9) + \Pr(9 \to 4 \mid \text{using } s)L(9 \to 4)$

We want to choose a classifier so as to minimize this total risk

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

If we choose class "four" at boundary, expected loss is: = $P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) + P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 4)$

If we choose class "nine" at boundary, expected loss is: $= P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss

So, best decision boundary is at point \boldsymbol{x} where

 $P(\text{class is } 9 \mid \mathbf{x}) L(9 \rightarrow 4) = P(\text{class is } 4 \mid \mathbf{x}) L(4 \rightarrow 9)$

To classify a new point, choose class with lowest expected loss; i.e., choose "four" if

 $P(4 | \mathbf{x})L(4 \rightarrow 9) > P(9 | \mathbf{x})L(9 \rightarrow 4)$

Example: learning skin colors

 We can represent a class-conditional density using a histogram (a "non-parametric" distribution)

Now we get a new image, and want to label each pixel as skin or non-skin.

What's the probability we care about to do skin detection?

Bayes rule

posterior

prior

$$P(skin \mid x) = \frac{P(x \mid skin)P(skin)}{P(x)}$$

 $P(skin \mid x) \alpha P(x \mid skin) P(skin)$

Where does the prior come from?

Why use a prior?

Example: classifying skin pixels

Now for every pixel in a new image, we can estimate probability that it is generated by skin.

Brighter pixels → higher probability of being skin

Classify pixels based on these probabilities

- if $p(\text{skin}|\boldsymbol{x}) > \theta$, classify as skin
- if $p(\text{skin}|\boldsymbol{x}) < \theta$, classify as not skin

Example: classifying skin pixels

Figure 6: A video image and its flesh probability imag

Figure 7: Orientation of the flesh probability distribution marked on the source video image

Gary Bradski, 1998

Example: classifying skin pixels

Figure 13: CAMSHIFT-based face tracker used to over a 3D graphic's model of Hawaii

Figure 12: CAMSHIFT-based face tracker used to play Quake 2 hands free by inserting control variables into the mouse queue

Using skin color-based face detection and pose estimation as a video-based interface

Gary Bradski, 1998

Supervised classification

- Want to minimize the expected misclassification
- Two general strategies
 - Use the training data to build representative probability model; separately model class-conditional densities and priors (generative)
 - Directly construct a good decision boundary, model the posterior (discriminative)

General classification This same procedure applies in more general circumstances • More than two classes • More than two classes • More than two classes • More than new dimension • Herx, X is an image region • Herx, X is an image region • act face can be thought downstoonal space 18. Mondamens Evaluation of the space • As point in high Minerational space 19. Schooldeman and Trypoide • Stilling window object detection (Faces!)