

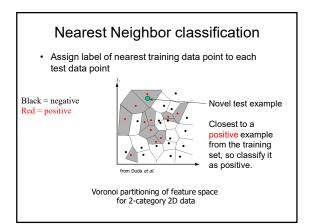
Kristen Grauman UT Austin

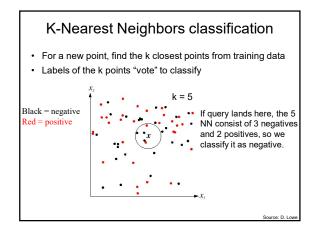
Last time

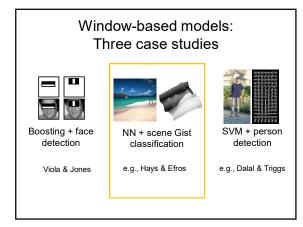
- Sliding window object detection wrap-up
 - Attentional cascade
 - Applications / examples
 - Pros and cons
- Supervised classification continued
 - Nearest neighbors

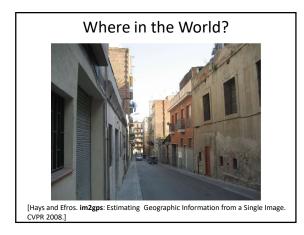
Today

- Supervised classification continued
 - Nearest neighbors (wrap up)
 - Support vector machines
 - HoG pedestrians example
 - Kernels
 - Multi-class from binary classifiers
 - Pyramid match kernels
 - Evaluation
 - Scoring an object detector
 - Scoring a multi-class recognition system

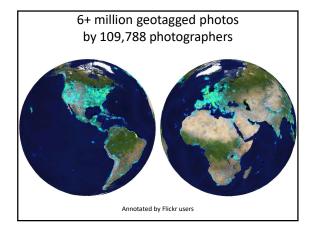






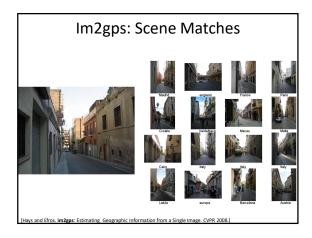


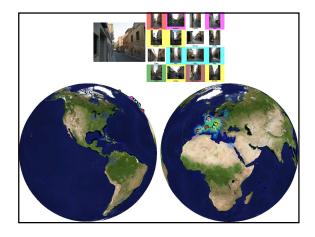


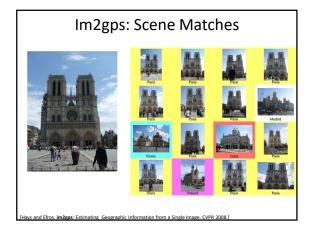


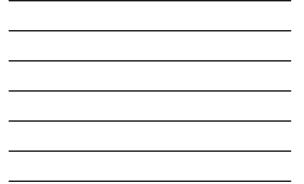
Which scene properties are relevant?

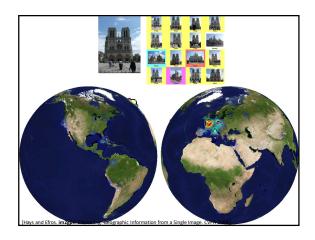
- Gist scene descriptor
- Color Histograms L*A*B* 4x14x14 histograms
- Texton Histograms 512 entry, filter bank based
- Line Features Histograms of straight line stats

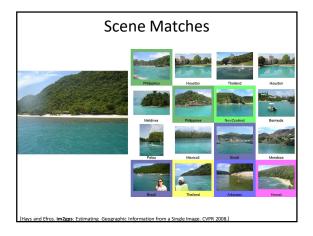


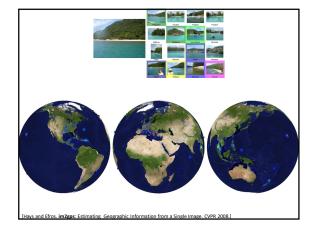


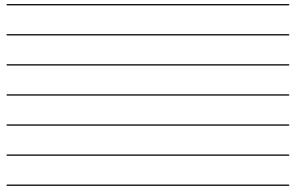


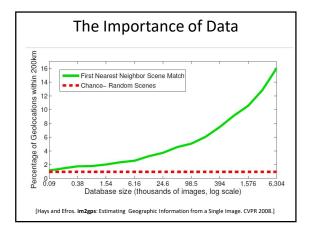










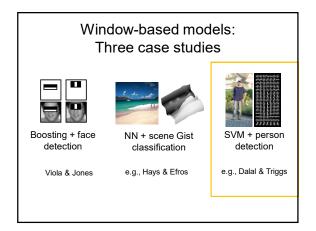


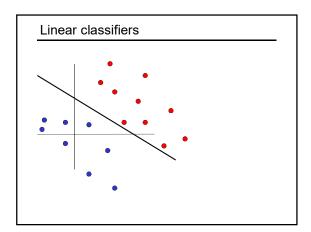
Nearest neighbors: pros and cons

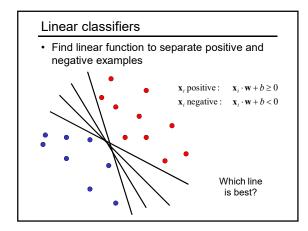
Pros:

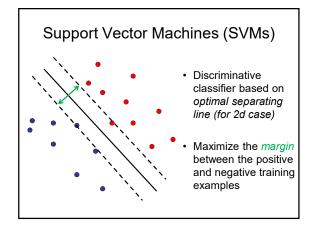
- Simple to implement
- Flexible to feature / distance choices
- Naturally handles multi-class cases
- Can do well in practice with enough representative data
- Cons:
 - Large search problem to find nearest neighbors
 - Storage of data
 - Must know we have a meaningful distance function

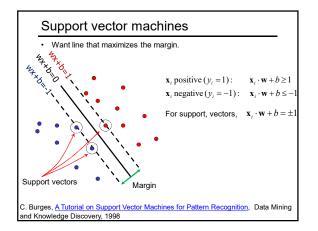
Kristen Graumar

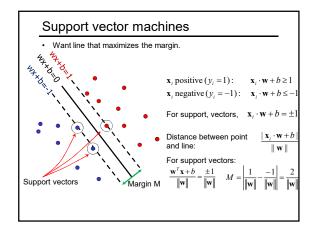


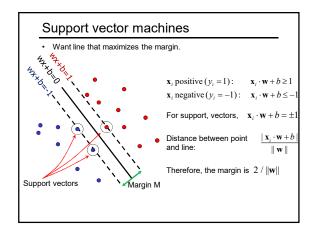


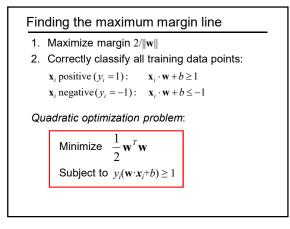


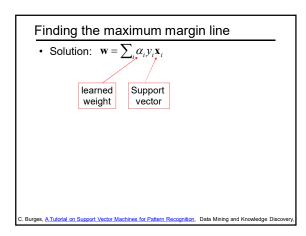




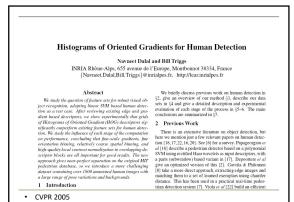




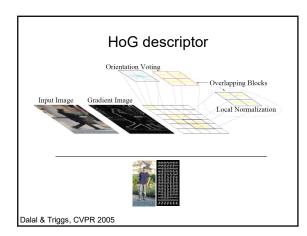




Finding the maximum margin line • Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_i - \mathbf{w} \cdot \mathbf{x}_i$ (for any support vector) $\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$ Classification function: $f(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$ = sign $\left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b\right)$ If f(x) < 0, classify as negative, if f(x) > 0, classify as positive gnition, Data Mining and Knowledge Disc



18,317 citations

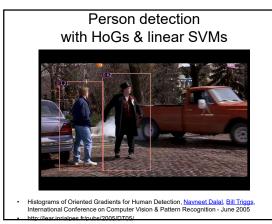


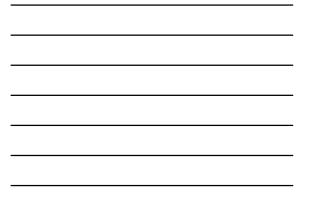
Person detection with HoG's & linear SVM's

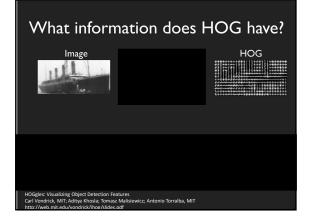
• Map each grid cell in the input window to a histogram counting the gradients per orientation.

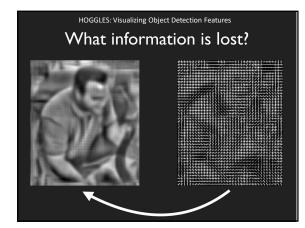
 Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

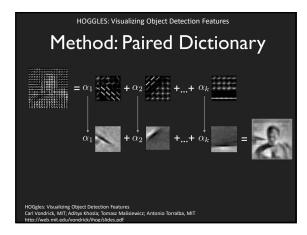
Dalal & Triggs, CVPR 2005





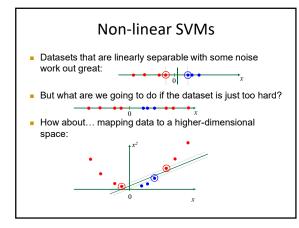


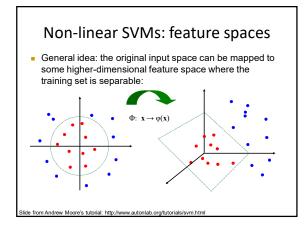




Questions

• What if the data is not linearly separable?





Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

"Kernel trick": Example

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2];$ let $K(\mathbf{x} \ \mathbf{x}) = (1 + \mathbf{x}^T \mathbf{x})^2$

Need to show that
$$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j)^T (\mathbf{x}_i \cdot \mathbf{x}_j)$$

 $K(\mathbf{x}_i \cdot \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^2$

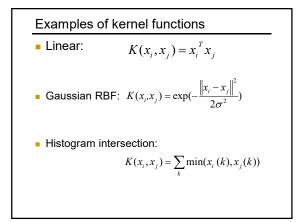
$$= 1 + x_{i1}^{2} x_{j1}^{2} + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$$

$$= [1 x_{i1}^{2} \sqrt{2} x_{i1} x_{i2} x_{i2}^{2} \sqrt{2} x_{i1} \sqrt{2} x_{i2}]^{T}$$

$$= [1 x_{j1}^{2} \sqrt{2} x_{j1} x_{j2} x_{j2}^{2} \sqrt{2} x_{j1} \sqrt{2} x_{j2}]$$

$$= a(x) T a(x)$$

where
$$\varphi(\mathbf{x}_i) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 x_2 & x_2^2 & \sqrt{2} x_1 & \sqrt{2} x_2 \end{bmatrix}$$



SVMs for recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Use this "kernel matrix" to solve for SVM support vectors & weights.
- To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Kristen Grauman

Questions

- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

- Achieve multi-class classifier by combining a number of binary classifiers
- One vs. all
 - Training: learn an SVM for each class vs. the rest
 Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest
- One vs. one

decision value

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to
- assign to the test example

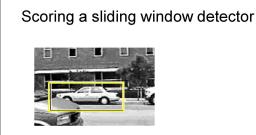
SVMs: Pros and cons

Pros

- · Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
 Work very well in practice, even with small training sample sizes

• Cons

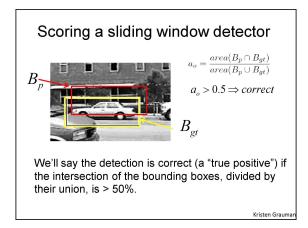
- · No "direct" multi-class SVM, must combine two-class SVMs
- · Can be tricky to select best kernel function for a problem
- · Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

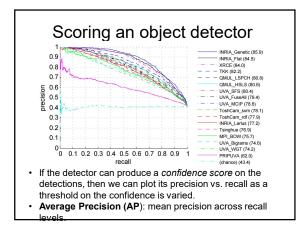


If prediction and ground truth are *bounding boxes*, when do we have a correct detection?

Kristen Grauman

Kristen Grauman



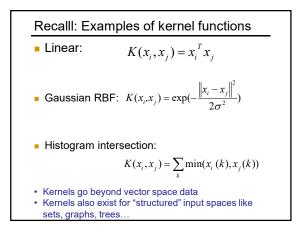


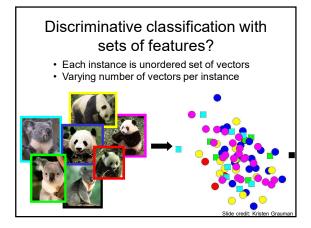
Summary: This week

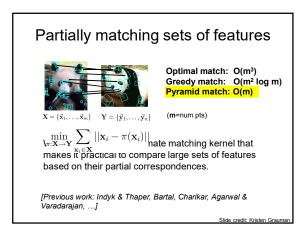
- · Object recognition as classification task
 - Boosting (face detection ex)
 - Support vector machines and HOG (person detection ex)
 Pyramid match kernels
 - Hoggles visualization for understanding classifier mistakes
 - Nearest neighbors and global descriptors (scene rec ex)
 - Sliding window search paradigm
 - Pros and cons
 - Speed up with attentional cascade
- Evaluation

•

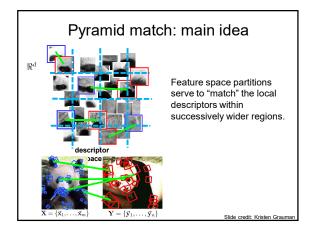
- Detectors: Intersection over union, precision recall
- Classifiers: Confusion matrix

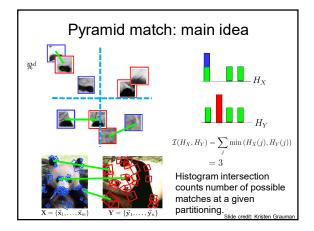


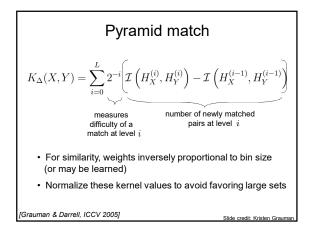




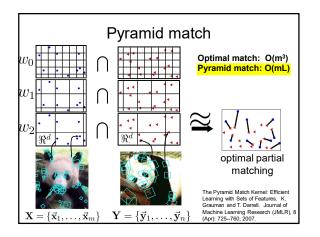
19

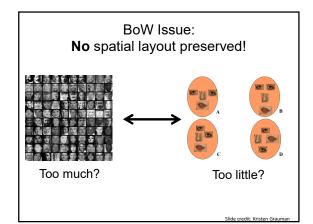


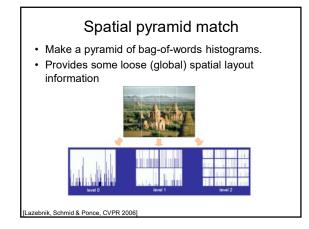


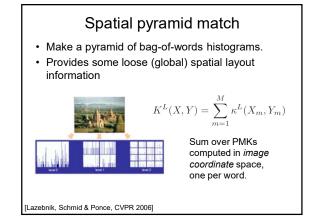


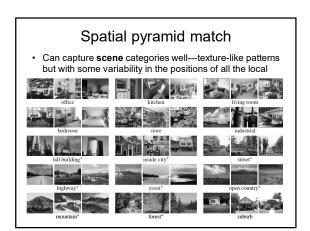
20

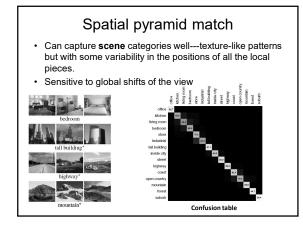












Summary: This week

- Object recognition as classification task

 - Boosting (face detection ex)
 Support vector machines and HOG (person detection ex) Pyramid match kernels
 Hoggles visualization for understanding classifier mistakes
 Nearest neighbors and global descriptors (scene rec ex)
- Sliding window search paradigm
 - Pros and cons
 - Speed up with attentional cascade
- Evaluation
 - Detectors: Intersection over union, precision recall
 - Classifiers: Confusion matrix