Support vector
machines and kernels

Thurs April 20
Kristen Grauman
UT Austin
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Last time

« Sliding window object detection wrap-up
* Attentional cascade
* Applications / examples
* Pros and cons

* Supervised classification continued
* Nearest neighbors

Today

* Supervised classification continued
* Nearest neighbors (wrap up)
* Support vector machines
* HoG pedestrians example
* Kernels
* Multi-class from binary classifiers
* Pyramid match kernels
* Evaluation
* Scoring an object detector
* Scoring a multi-class recognition system




Nearest Neighbor classification

» Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

Voronoi partitioning of feature space

from Duda et al.

for 2-category 2D data

Novel test example

Closestto a
positive example
from the training
set, so classify it
as positive.
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K-Nearest Neighbors classification

» For a new point, find the k closest points from training data
» Labels of the k points “vote” to classify

Black = negative

. k=5

Red = positive e e s
N @" :

If query lands here, the 5
NN consist of 3 negatives
and 2 positives, so we
classify it as negative.

X

Source: D. Lowe

=™
= ®

Boosting + face
detection

Viola & Jones

Ee

NN + scene Gist
classification

e.g., Hays & Efros

Window-based models:
Three case studies

SVM + person
detection

e.g., Dalal & Triggs




Where in the World?

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image.
CVPR 2008.]

6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users

Which scene properties are relevant?

* Gist scene descriptor

* Color Histograms - L*A*B* 4x14x14 histograms
« Texton Histograms — 512 entry, filter bank based
 Line Features — Histograms of straight line stats
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Im2gps: Scene Matches

Im2gps: Scene Matches

[Hays and Efros. im2gps: Estimating i ion from a Single Image. CVPR 2008,
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Scene Matches

[Hays and Efros. im2gps: Estimating

from a Single Image, CVPR 2008.]

s and Efros. im2gps: Estimating

ion from a Single Image. CVPR 2008,
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Quantitative Evaluation Test Set

The Importance of Data
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[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

Nearest neighbors: pros and cons

* Pros:
— Simple to implement
— Flexible to feature / distance choices
— Naturally handles multi-class cases

— Can do well in practice with enough representative data
« Cons:

— Large search problem to find nearest neighbors

— Storage of data

— Must know we have a meaningful distance function

Kristen Graumary




Window-based models:
Three case studies
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Boosting + face NN + scene Gist SVM + person
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs
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Linear classifiers

Lt |

Linear classifiers

» Find linear function to separate positive and
negative examples

° X, positive: X, -w+b>0
X, negative: X, -w+b<0

Which line
is best?
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Support Vector Machines (SVMs)

» Discriminative
classifier based on
optimal separating
line (for 2d case)

* Maximize the margin
between the positive
and negative training
examples

Support vector machines

*  Want line that maximizes the margin.

\ \\‘/ ..
S, O N\ L4 X; positive (y, =1): X, W+b>1
X, negative(y, =—1): x,-w+b<-]

° For support, vectors, X, W+ b=+]
°
°
°
Support vectors e Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Support vector machines

« Want line that maximizes the margin.

X; positive (y, =1): X, W+b>1

X, negative (y, =—1): X, -w+b< -]

For support, vectors, X, -W+b =zl

o Distance between point | X,-W+b]|

and line: wli

For support vectors:

w’x+b:171 [t -1y 2
Supportvectors  © NMarginm W[ W[ T T[] ]| W]




Support vector machines

*  Want line that maximizes the margin.
%y %
S,
Aﬁ’x 6\\ \\\/
S, O N\ L4 X; positive (y, =1): X, W+b>1

X, negative(y, =—1): x,-w+b<-]
® For support, vectors, x,~w+b:il

o Distance between point | X,-W+b|
and line: w]l

Therefore, the margin is 2 / [|w]|
Support vectors ° argin M
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Finding the maximum margin line

1. Maximize margin 2/|w||

2. Correctly classify all training data points:
X, positive (y, =1): X, -W+b2>1
X, negative(y, =—1): x,-w+b<-1

Quadratic optimization problem:

1
Minimize EWTW

Subject to y(w-x+b)>1

Finding the maximum margin line

« Solution: W= ayx,

/
learned Support
weight vector
C. Burges, A Tutorial on Support Vector Machines for Pattern Data Mining and Knowledge Discovery,




Finding the maximum margin line

« Solution: W= ayx,
b=y;—w-x; (forany support vector)
wW-X+b= zl_ o, yX,-X +b
« Classification function:
f(x)=sign (wW-x+Db)

= sign(ziaiy,

Iff(x) < 0, classify
as negative,

if f(x) > 0, classify
as positive

X; x+b)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discove

4/20/2017

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhone-Alps. 655 avenue de 1'Europe, Montbonnot 38334, France
{Navneet. DalalBill Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract We briefly discuss previous work on human detection in

52, give an overview of our method §3, describe our data
sets in 4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summatized in §7

We study the question of feature sets for robust visual ob-
Ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig- 2 Previous Work
nificantly outperform existing feature sets for human detec-

There is an extensive literature on object detection, but

tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and

here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou er
al [18] describe based on a polynomial

high-quality local contrast in ?
scriptor blacks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction

SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gaviila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of leamed exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er al [22] build an efficient

CVPR 2005
18,317 citations

HoG descriptor

Ori

Input Image Gradient Image

<

ntation Voting

= =— Overlapping Blocks

ation

Dalal & Triggs, CVPR 2005
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Person detection
with HoG’s & linear SVM'’s

*Map each grid cell in the
input window to a histogram
counting the gradients per
orientation.

*Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Dalal & Triggs, CVPR
2005
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Person detection
with HoGs & linear SVMs

« Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005
insialoes flpubs/2005/0T05,

Understanding classifier mistakes

11



Carl Vondrick http://web.mit.edu/vondrick/ihog/slides.pdf
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What information does HOG have?

Image

HOGgles: Visualizing Object Detection Features
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
htto://web.mit.edu/vondrick/ihog/slides.odf

HOGGLES: Visualizing Object Detection Features

What information is lost?

12



HOGGLES: Visualizing Object Detection Features

Method: Paired Dictionary

HOGgles: Visualizing Object Detection Features
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
htto://web.mit.edu/vondrick/ihog/slides.odf

HOGGLES: Visualizing Object Detection Features
A microscope
to view HOG

HOGgles: Visualizing Object Detection Features;

Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz;

Antonio Torralba, MIT
http://web.mit.edu/vondrick/ihog/slides.pdf
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HOGGLES: Visualizing Object Detection Features

HOGgles: Visualizing Object Detection Features; ICCV 2013
Carl Vondrick, MIT; Aditya Khosla; Tomasz Malisiewicz; Antonio Torralba, MIT
http://web.mit.edu/vondrick/ihog/slides.pdf

13



HOGGLES: Visualizing Object Detection Features

Human Vision HOG Vision
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Questions

* What if the data is not linearly separable?

Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
9 0% & .

= But what are we going to do if the dataset is just too hard?

0 x
= How about... mapping data to a higher-dimensional
space:

14



Non-linear SVMs: feature spaces

= General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x; X/) =o(x;) (0(7‘/)

« This gives a nonlinear decision boundary in the
original feature space:

Zaiy[K(Xisx) +b

4/20/2017

“Kernel trick”: Example

2-dimensional vectors x=[x; x,];
let K(x;,x;)=(1 + x"x)?
Need to show that K(x;,x)= o(x;) To(x;):

K(xpx)=(1 +x;"x;)2

=1+ xi12xj12 +2 XXy XXyt xi22xj22 + inlle + 2xi2xj2

= [1 2 N2 x5 %7 N2y V2]

(1 x;/° V2 XX X \/2xj1 \/2ij]
= o(x) To(x)),
where ¢(x) = [1 x,2 V2 xx, x> \2x, V2x,]

15



Examples of kernel functions

. . ;
Linear: K(x,x,)=xx,

[

X, —X; )
20°

Gaussian RBF: K(x,x;) =exp(—

Histogram intersection:
K(x,x,)= Y min(x, (k).x, (k)
k
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SVMs for recognition

1. Define your representation for each
example.

2. Select a kernel function. I

3. Compute pairwise kernel values
between labeled examples

4. Use this “kernel matrix” to solve for
SVM support vectors & weights.

5. To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

Kristen Grauman

Questions

* What if the data is not linearly separable?

* What if we have more than just two
categories?

16



Multi-class SVMs

» Achieve multi-class classifier by combining a number of
binary classifiers

* Oneyvs.all

— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to it the class of the SVM that returns the highest
decision value

* Onevs. one

— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example

Kristen Grauman
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SVMs: Pros and cons

* Pros

« Kernel-based framework is very powerful, flexible
« Often a sparse set of support vectors — compact at test time

* Work very well in practice, even with small training sample
sizes

* Cons

« No “direct” multi-class SVM, must combine two-class SVMs
« Can be tricky to select best kernel function for a problem
« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples

— Learning can take a very long time for large-scale problems

Scoring a sliding window detector

If prediction and ground truth are bounding boxes,
when do we have a correct detection?

Kristen Grauman|
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Scoring a sliding window detector

area(Bp N Byt)

' ay = ———2__ 29t
=5 ‘e area(B, U By)

a,>0.5= correct

B

gt

We'll say the detection is correct (a “true positive”) if
the intersection of the bounding boxes, divided by
their union, is > 50%.

4/20/2017

Kristen Grauman|

Scoring an object detector

INRIA_Genetic (85.9)

INRIA_Flat (84.5)

XRCE (84.0)

— — - TKK(822)

— — — QMUL_LSPCH (808)
QMUL_HSLS (80.6)

— — UVA_SFS (80.4)

— —  UVA_FuseAll (79.4)

— = UVAMCIP (78.6)
ToshCam_svm (78.1)

— — — ToshCam_rdf (77.9)

—— INRIA_Larlus (77.2)

— — — Tsinghua (76.9)

' MPI_BOW (75.7)

| UVA_Bigrams (74.6)

L UVA_WGT (74.2)

0 01020304 050607 0809 1 e )

recall (chance) (43.4)

« If the detector can produce a confidence score on the
detections, then we can plot its precision vs. recall as a
threshold on the confidence is varied.

« Average Precision (AP): mean precision across recall

precision

lavals

Summary: This week

» Object recognition as classification task
« Boosting (face detection ex)
«  Support vector machines and HOG (person detection ex)

Hoggles visualization for understanding classifier mistakes

« Nearest neighbors and global descriptors (scene rec ex)
» Sliding window search paradigm

« Pros and cons

« Speed up with attentional cascade
» Evaluation

« Detectors: Intersection over union, precision recall

« Classifiers: Confusion matrix

18



Recalll: Examples of kernel functions

. . ;
= Linear: K(x,x,)=xx,

[

X, —X; )
20°

= Gaussian RBF: K(x,x;)=exp(-

= Histogram intersection:
K(x,x,)= Y min(x, (k).x, (k)
k

» Kernels go beyond vector space data
« Kernels also exist for “structured” input spaces like
sets, graphs, trees...

Discriminative classification with
sets of features?

« Each instance is unordered set of vectors
» Varying number of vectors per instance

4/20/2017

Partially matching sets of features

Optimal match: O(m?)
Greedy match: O(m? log m)
Pyramid match: O(m)

X = {%),...,% Y = {F1,.. ¥} (m=num pts)

ES
min x; — 7(X; i

\W:XﬂYg [ ( 1)|L1ate matching kernel that

makes it'pracucal 1o compare large sets of features

based on their partial correspondences.

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal &
Varadarajan, ...]

Slide credit: Kristen Grauman
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Pyramid match: main idea

Feature space partitions
serve to “match” the local
descriptors within
successively wider regions.

4/20/2017

Slide credit: Kristen Grauman

Pyramid match: main idea

I(Hy, Hy) =y min (Hx(j). Hy (j))
J
3
Histogram intersection
counts number of possible
matches at a given

partitioning. -
Slide credit, Kristen Grauman |

Pyramid match

L
Ka(X,Y) = zw[z (80, 10) -1 (1§ H;i-nj
=0

AN /
~ -
measures number of newly matched
difficulty of a pairs at level

match at level i

« For similarity, weights inversely proportional to bin size
(or may be learned)

» Normalize these kernel values to avoid favoring large sets

[Grauman & Darrell, ICCV 2005] Slide credit: Kristen Grauman

20



Pyramid match

7 - A . ) ,
(Wo ﬂ - Optimal match: O(m?)
QN0 L a Pyramid match: O(mL)

wl..- -. m ‘.:‘ “::
T - =~
Lo : .'. m PR I g 1\‘]\<</\

T f
R e T i
e optimal partial
® matching
27

The Pyramid Match Kernel: Efficient
Leaming with Sets of Features. K.
Grauman and T. Darrell. Journal of

Ry Y= {¥1,...,¥n} (Apr): 725-760, 2007.
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Machine Learning Research (JMLR), 8

BoW lIssue:
No spatial layout preserved!

Too little?

Slide credit; Kristen Grauman

Spatial pyramid match

* Make a pyramid of bag-of-words histograms.

» Provides some loose (global) spatial layout
information

Lazebnik, Schmid & Ponce, CVPR 2006]
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Spatial pyramid match

» Make a pyramid of bag-of-words histograms.

» Provides some loose (global) spatial layout
information

M
IMXH:ZM@MM

m=1

Sum over PMKs
computed in image
coordinate space,
one per word.

[Lazebnik, Schmid & Ponce, CVPR 2006]
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Spatial pyramid match

» Can capture scene categories well---texture-like patterns
but with some variability in the positions of all the local

o T FllBR gnppl ol

Kitchen living room
ﬂ I ! : M@ P h
bedroom store

industrial
=38 g
- =8
YA
street”

tall building* inside city*

HN i e

highway* oast* open country*

mmlm.'un

suburb

Spatial pyramid match

» Can capture scene categories well---texture-like patterns
but with some variability in the positions of all the local
pieces.

» Sensitive to global shifts of the view

U

bedroom

tall building* tal

— gl

Confusion table
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Summary: This week

» Object recognition as classification task

« Boosting (face detection ex)

«  Support vector machines and HOG (person detection ex)

Pyramid match kernels
*  Hoggles visualization for understanding classifier mistakes

« Nearest neighbors and global descriptors (scene rec ex)
+ Sliding window search paradigm

« Pros and cons

« Speed up with attentional cascade
» Evaluation

« Detectors: Intersection over union, precision recall

« Classifiers: Confusion matrix

4/20/2017
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