Deep learning for visual recognition

Thurs April 27 Kristen Grauman UT Austin

Last time

- Support vector machines (wrap-up)
 - Pyramid match kernels
- Evaluation
 - Scoring an object detector
 - Scoring a multi-class recognition system

Today

- (Deep) Neural networks
- Convolutional neural networks

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

Learning a Hierarchy of Feature Extractors

- Each layer of hierarchy extracts features from output of previous layer
- All the way from pixels → classifier
- Layers have the (nearly) same structure

· Train all layers jointly

lide: Rob Fergu

Learning Feature Hierarchy

Goal: Learn useful higher-level features from images

Slide: Rob Fergu

Learning Feature Hierarchy

- · Better performance
- Other domains (unclear how to hand engineer):
 - Kinect
 - Video
 - Multi spectral

- · Feature computation time
 - Dozens of features now regularly used [e.g., MKL]
 - Getting prohibitive for large datasets (10's sec /image)

Slide: R. Fergus

Neuron: Linear Perceptron

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

 $\operatorname{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Slide credit: Pieter Abeel and Dan Kle

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Kle

Two-layer perceptron network

Learning w

Training examples

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

• Objective: a misclassification loss

$$\min_{w} \sum_{i=1}^{m} \left(y^{(i)} - h_w(f(x^{(i)})) \right)^2$$

- Procedure:
 - Gradient descent / hill climbing

Slide credit: Pieter Abeel and Dan Kl

Hill climbing Simple, general idea: Start wherever Repeat: move to the best neighboring state If no neighbors better than current, quit Neighbors = small perturbations of w What's bad? Complete? Optimal?

Neural network properties

- Theorem (Universal function approximators): A two-layer network with a sufficient number of neurons can approximate any continuous function to any desired accuracy
- Practical considerations:
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - Hill-climbing procedure can get stuck in bad local optima

Approximation by Superpositions of Sigmoidal Function, 1989

lide credit: Pieter Abeel and Dan Kleir

Today

- (Deep) Neural networks
- Convolutional neural networks

Convolutional Neural Networks (CNN, ConvNet, DCN)

- CNN = a multi-layer neural network with
 - Local connectivity:
 - Neurons in a layer are only connected to a small region of the layer before it
 - **Share** weight parameters across spatial positions:
 - Learning shift-invariant filter kernels

Jia-Bin Huang and Derek Hoiem, UIU

Neocognitron [Fukushima, Biological Cybernetics 1980] visual area desconting area desconting

Applications

- Handwritten text/digits
 - MNIST (0.17% error [Ciresan et al. 2011])
 - Arabic & Chinese [Ciresan et al. 2012]
- Simpler recognition benchmarks
 - CIFAR-10 (9.3% error [Wan et al. 2013])
 - Traffic sign recognition
 - 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

Application: ImageNet

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk

[Deng et al. CVPR 2009]

https://sites.google.com/site/deeplearningcvpr2014

Slide: R. Fergus

AlexNet

- Similar framework to LeCun'98 but:
 - Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) More data (10^6 vs. 10^3 images) GPU implementation (50x speedup over CPU)

 - - Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Industry Deployment

- Used in Facebook, Google, Microsoft
- Image Recognition, Speech Recognition,
- Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14 $\,$

Slide: R. Fergus

Beyond classification

- Detection
- Segmentation
- Regression
- Pose estimation
- Matching patches
- Synthesis

and many more...

lia-Bin Huang and Derek Hoiem, UIUC

Recap

- Neural networks / multi-layer perceptrons
 - View of neural networks as learning hierarchy of features
- Convolutional neural networks
 - Architecture of network accounts for image structure
 - "End-to-end" recognition from pixels
 - Together with big (labeled) data and lots of computation → major success on benchmarks, image classification and beyond