

Last time

- Various models for image "noise"
- · Linear filters and convolution useful for
 - Image smoothing, removing noise
 - Box filter
 - Gaussian filter
 - Impact of scale / width of smoothing filter
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving

Mask properties Smoothing Values positive Sum to 1 → constant regions same as input Amount of smoothing proportional to mask size Remove "high-frequency" components; "low-pass" filter Derivatives __________ signs used to get high response in regions of high contrast Sum to _______ > no response in constant regions High absolute value at points of high contrast

Original image (599 by 799)

Conventional resize (399 by 599)

Seam carving (399 by 599)

Results from Jay Hennig

Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, `canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei

Recap: Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, `canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei

Summary

- Image gradients
- Seam carving gradients as "energy"
- Gradients → edges and contours
- Template matching
 - Image patch as a filter
 - Chamfer matching
 - Distance transform

Coming up

- A1 out tonight, due in 2 weeks
- Thursday: binary image analysis
- Friday: A0 due