

Chamfer distance: properties

- Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- Inexpensive way to match shapes

Chamfer matching system

<u>Kristen Grauman, U</u>T-Aust

http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Chamfer matching system

 Gavrila et al. http://gavrila.net/Research/Chamfer_System/chamfer_system.html

Binary image analysis: basic steps

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract separate blobs
 - Connected components
- · Describe the blobs with region properties

Thresholding

- Grayscale -> binary mask
- Useful if object of interest's intensity distribution is distinct from background

- Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image.
- Useful to clean up result from thresholding
- · Basic operators are:
 - Dilation
 - Erosion

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemer	nt						1	1	1]
Output Image	1	1	0	1	1	1	1	1		

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	ıt							1	1	1
Output Image	0	0	0	0	0	1	0	0	0	

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	t								1	
Output Image	0	0	0	0	0	1	0	0	0	1
Note that the object gets smaller										

Connected components

- We'll consider a sequential algorithm that requires only 2 passes over the image.
- Input: binary image
- **Output**: "label" image, where pixels are numbered per their component
- Note: foreground here is denoted with black pixels.

Binary image analysis: basic steps (recap)

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract separate blobs
 - Connected components
- · Describe the blobs with region properties

Matlab

Example using binary image analysis: segmentation of a liver

Kristen Grauman, UT-Aust

Binary images

Pros

- Can be fast to compute, easy to store
- Simple processing techniques available
- Lead to some useful compact shape descriptors
- Cons
 - Hard to get "clean" silhouettes
 - Noise common in realistic scenarios
 - Can be too coarse of a representation
 - Not 3d

Summary **Derivative filters** • Operations, tools Smoothing, morphology Thresholding Connected components Matched filters Histograms ╷╷╷╷╷ • Features, Edges, gradients representations Blobs/regions Local patterns Textures (next) Color distributions Kristen Grauman, UT-Austi

Next • Texture: See assigned reading • Reminder: A1 due next Friday i