Segmentation & Grouping
Kristen Grauman
UT Austin
Tues Feb 7

Announcements

• A0 on Canvas
• No office hours today
 – TA office hours this week as usual
• Guest lecture Thursday by Suyog Jain
 – Interactive segmentation
• Check in on pace
Last time

• Optical flow: estimating motion in video
• Background subtraction

Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
Grouping in vision

- Goals:
 - Gather features that belong together
 - Obtain an intermediate representation that compactly describes key image or video parts

Examples of grouping in vision

- Determine image regions
- Group video frames into shots
- Figure-ground
- Object-level grouping

Slide credit: Kristen Grauman
Grouping in vision

• Goals:
 – Gather features that belong together
 – Obtain an intermediate representation that compactly describes key image (video) parts

• Top down vs. bottom up segmentation
 – Top down: pixels belong together because they are from the same object
 – Bottom up: pixels belong together because they look similar

• Hard to measure success
 – What is interesting depends on the app.

Slide credit: Kristen Grauman

What are meta-cues for grouping?
Muller-Lyer illusion

What things should be grouped?
What cues indicate groups?
Gestalt

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features

- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

Similarity

Slide credit: Kristen Grauman
Symmetry

Common fate
Proximity

Some Gestalt factors

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate
- Common Region

Parallelism
Symmetry
Continuity
Closure

Slide credit: Kristen Grauman
Illusory/subjective contours

Interesting tendency to explain by occlusion

In Vision, D. Marr, 1982
Continuity, explanation by occlusion
Continuity, explanation by occlusion

Slide credit: Kristen Grauman
Incredible way of making my two star review seem like I didn't hate the film

In Vision, D. Marr, 1982; from J. L. Marroquin, "Human visual perception of structure", 1976.
Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7

Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7
Gestalt

• Gestalt: whole or group
 – Whole is greater than sum of its parts
 – Relationships among parts can yield new properties/features

• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

• Inspiring observations/explanations; challenge remains how to best map to algorithms.

Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, EM, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
The goals of segmentation

Separate image into coherent “objects”

Group together similar-looking pixels for efficiency of further processing

“superpixels”

Source: Lana Lazebnik
These intensities define the three groups. We could label every pixel in the image according to which of these primary intensities it is.
- i.e., segment the image based on the intensity feature.
- What if the image isn’t quite so simple?
Now how to determine the three main intensities that define our groups?
We need to **cluster**.

Clustering

- **Clustering algorithms:**
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. group pixels into regions
 - Useful when don’t know what you’re looking for
 - Requires data, but no labels
 - Often get gibberish
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:

$$\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \| p - c_i \|^2$$

Clustering

• With this objective, it is a “chicken and egg” problem:
 – If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.

 – If we knew the **group memberships**, we could get the centers by computing the mean per group.
K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points’ assignments change

K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
K-means
1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations

K-means
1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
K-means

1. Ask user how many clusters they'd like. *(e.g. k=5)*
2. Randomly guess k cluster center locations
3. Each data point finds out which center it's closest to.
4. Each center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. *(e.g. k=5)*
2. Randomly guess k cluster center locations
3. Each data point finds out which center it's closest to.
4. Each center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!
K-means clustering

• Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c_1, \ldots, c_K
2. Given cluster centers, determine points in each cluster
 • For each point p, find the closest c_i. Put p into cluster i
3. Given points in each cluster, solve for c_i
 • Set c_i to be the mean of points in cluster i
4. If c_i have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a "local minimum"
• does not always find the global minimum of objective function:
\[
\sum_{i \text{ clusters}} \sum_{p \text{ points in cluster } i} \| p - c_i \|^2
\]

Initialization

- K-means is non-deterministic
- Requires initial means
- It does matter what you pick!
- What can go wrong?
- Various schemes for preventing this kind of thing
K-means: pros and cons

Pros
• Simple, fast to compute
• Converges to local minimum of within-cluster squared error

Cons/issues
• Setting k?
• Sensitive to initial centers
• Sensitive to outliers
• Detects spherical clusters
• Assuming means can be computed

Probabilistic clustering

Basic questions
• what’s the probability that a point \(x \) is in cluster \(m \)?
• what’s the shape of each cluster?

K-means doesn’t answer these questions

Probabilistic clustering (basic idea)
• Treat each cluster as a Gaussian density function
Expectation Maximization (EM)

A probabilistic variant of K-means:
- **E step:** "soft assignment" of points to clusters
 - estimate probability that a point is in a cluster
- **M step:** update cluster parameters
 - mean and variance info (covariance matrix)
- maximizes the likelihood of the points given the clusters

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (1-d)
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Clusters based on intensity similarity don’t have to be spatially coherent.

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity+position similarity

Both regions are black, but if we also include position (x,y), then we could group the two into distinct segments; way to encode both similarity & proximity.

Slide credit: Kristen Grauman
Segmentation as clustering

- Color, brightness, position alone are not enough to distinguish all regions…

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on texture similarity

Feature space: filter bank responses (e.g., 24-d)
Recall: texture representation example

- Windows with primarily horizontal edges
- Windows with small gradient in both directions
- Windows with primarily vertical edges
- Both

Statistics to summarize patterns in small windows

Segmentation with texture features

- Find “textons” by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram

Image

Texton map

Texton index

Count

Count

Adapted from Lana Lazebnik
Image segmentation example

These look very similar in terms of their color distributions (histograms).

How would their *texture* distributions compare?

Pixel properties vs. neighborhood properties

These look very similar in terms of their color distributions (histograms).

How would their *texture* distributions compare?
Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries

Recall: K-means pros and cons

Pros
• Simple, fast to compute
• Converges to local minimum of within-cluster squared error

Cons/issues
• Setting k?
• Sensitive to initial centers
• Sensitive to outliers
• Detects spherical clusters
• Assuming means can be computed
Mean shift clustering and segmentation

- An advanced and versatile technique for clustering-based segmentation

Mean shift algorithm

- The mean shift algorithm seeks *modes* or *local maxima of density* in the feature space

Slide credit: Lana Lazebnik
Mean shift

Search window
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift

Slide by Y. Ukrainitz & B. Sarel
Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean shift segmentation results

![Segmentation results](image1)

Mean shift segmentation results

![Segmentation results](image2)
Mean shift

- **Pros:**
 - Does not assume shape on clusters
 - One parameter choice (window size, aka “bandwidth”)
 - Generic technique
 - Find multiple modes

- **Cons:**
 - Selection of window size
 - Does not scale well with dimension of feature space

Outline

- What are grouping problems in vision?

- Inspiration from human perception
 - Gestalt properties

- Bottom-up segmentation via clustering
 - Algorithms:
 - Mode finding and mean shift: k-means, mean-shift
 - Graph-based: normalized cuts
 - Features: color, texture, …
 - Quantization for texture summaries
Images as graphs

Fully-connected graph
- node (vertex) for every pixel
- link between every pair of pixels, p,q
- affinity weight w_{pq} for each link (edge)
 - w_{pq} measures similarity
 » similarity is inversely proportional to difference (in color and position...)

Source: Steve Seitz

Segmentation by Graph Cuts

Break Graph into Segments
- Want to delete links that cross *between* segments
- Easiest to break links that have low similarity (low weight)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Source: Steve Seitz
Measuring affinity

- One possibility:

\[\text{aff}(x, y) = \exp \left(-\frac{1}{2\sigma_d^2} \| x - y \|^2 \right) \]

Small sigma: group only nearby points

Large sigma: group distant points
Cuts in a graph: Min cut

Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:
 \[\text{cut}(A, B) = \sum_{p \in A, q \in B} w_{p,q} \]

Find minimum cut
- gives you a segmentation
- fast algorithms exist for doing this

Source: Steve Seitz

Minimum cut

- Problem with minimum cut:
 Weight of cut proportional to number of edges in the cut; tends to produce small, isolated components.

Fig. 1. A case where minimum cut gives a bad partition.

[Shi & Malik, 2000 PAMI]
Cuts in a graph: Normalized cut

Normalized Cut

- fix bias of Min Cut by normalizing for size of segments:

\[Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)} \]

\[assoc(A, V) = \text{sum of weights of all edges that touch } A \]

- \(Ncut \) value small when we get two clusters with many edges with high weights, and few edges of low weight between them.
- Approximate solution for minimizing the \(Ncut \) value: generalized eigenvalue problem.

Source: Steve Seitz

Example results
Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

Normalized cuts: pros and cons

Pros:
- Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- Does not require model of the data distribution

Cons:
- Time complexity can be high
 - Dense, highly connected graphs → many affinity computations
 - Solving eigenvalue problem
- Preference for balanced partitions

Slide credit: Kristen Grauman
Summary

- Segmentation to find object boundaries or mid-level regions, tokens.
- Bottom-up segmentation via clustering
 - General choices -- features, affinity functions, and clustering algorithms
- Grouping also useful for quantization, can create new feature summaries
 - Texton histograms for texture within local region
- Example clustering methods
 - K-means
 - Mean shift
 - Graph cut, normalized cuts

Coming up

- Interactive image and video segmentation

Results achieved with average of 2 user clicks

[Jain & Grauman, HCOMP 2016]