

Fitting: Main idea

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
 - · What model represents this set of features best?
 - · Which of several model instances gets which feature?
 - How many model instances are there?
- · Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Slide credit: L. Lazebnik

Slide credit: Kristen Grauman

2/13/2017

9

Extens	sion 1: Use the image gradient	
1.	same	
2.	for each edge point I[x,y] in the image	
	compute unique (d, θ) based on image gradient at (x,y)	
	H[d, θ] += 1	
3.	same	
4.	same	
(Redu	ces degrees of freedom)	
Extens	sion 2	
•	give more votes for stronger edges (use magnitude of gradient))
Extens	sion 3	
•	change the sampling of (d, θ) to give more/less resolution	
Extens	sion 4	
•	The same procedure can be used with circles, squares, or any other shape	
	other shape	

Summary

- Clustering and segmentation algorithms
 - Kmeans
 - Mean shift
 - Normalized cuts
 - MRF for interactive
- Quantizing features
 - · Summarize spatial statistics over prototypical feature
- · Fitting via voting
 - Fitting vs. grouping
 - Hough Transform for lines

Coming up

- Thursday: More on Hough transform
 Circles, arbitrary shapes
- Reminder: A2 is due next Friday