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Recognizing object categories
Kristen Grauman

UT-Austin
Wed Sept 7, 2016

Announcements
• Reminders:

• Assignment 1 due Sept 16 11:59 pm on Canvas
• Optional CNN/Caffe tutorial on Monday Sept 12, 5-7 pm
• No laptops, phones, tablets, etc. in class

• Thoughts on review sharing?
• Questions about presentations, experiments, discussion proponent/opponent?
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Last time: Recognizing instances

Last time: Recognizing instances
• 1. Basics in feature extraction: filtering
• 2. Invariant local features
• 3. Recognizing object instances
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Instance recognition:
remaining issues

• How to summarize the content of an entire 
image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 
agreement?

Kristen Grauman

Spatial Verification

Both image pairs have many visual words in common.
Slide credit: Ondrej Chum

Query Query

DB image with high BoWsimilarity DB image with high BoWsimilarity
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Only some of the matches are mutually consistent
Slide credit: Ondrej Chum

Spatial Verification

Query Query

DB image with high BoWsimilarity DB image with high BoWsimilarity

Spatial Verification: two basic strategies
• RANSAC

• Generalized Hough Transform

Slide credit: Kristen Grauman
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Outliers affect least squares fit

Outliers affect least squares fit
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RANSAC
• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have much 
support from rest of the points.

RANSAC for line fitting
Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining 

points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers

Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select minimal subset of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function4. Select points consistent with model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function4. Select points consistent with model5. Repeat hypothesize-and-verify loop
Source: R. Raguram Lana Lazebnik

24

RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function4. Select points consistent with model5. Repeat hypothesize-and-verify loop
Source: R. Raguram Lana Lazebnik



9/7/2016

11

25

RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function4. Select points consistent with model5. Repeat hypothesize-and-verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select minimal subset of points2. Hypothesize a model3. Compute error function4. Select points consistent with model5. Repeat hypothesize-and-verify loop
Source: R. Raguram Lana Lazebnik
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That is an example fitting a model
(line)…

What about fitting a transformation (translation, 
affine…)?

Robust feature-based alignment

Source: L. Lazebnik
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• Extract features

Source: L. Lazebnik

Robust feature-based alignment

• Extract features
• Compute putative matches

Source: L. Lazebnik

Robust feature-based alignment
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• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

Source: L. Lazebnik

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Robust feature-based alignment
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• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Robust feature-based alignment

RANSAC: General form
• RANSAC loop:
1. Randomly select a seed group of points on which to 

base transformation estimate
2. Compute model from seed group
3. Find inliers to this transformation 
4. If the number of inliers is sufficiently large, re-compute  

estimate of model on all of the inliers

• Keep the model with the largest number of inliers
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RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector
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RANSAC verification

For matching specific scenes/objects, common to 
use an affine transformation for spatial verification

Fitting an affine transformation
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RANSAC verification

Spatial Verification: two basic strategies
• RANSAC

– Typically sort by BoW similarity as initial filter
– Verify by checking support (inliers) for possible affine 

transformations 
• e.g., “success” if find an affine transformation with > N inlier 

correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 
– Verify parameters with enough votes

Kristen Grauman
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Spatial Verification: two basic strategies
• RANSAC

– Typically sort by BoW similarity as initial filter
– Verify by checking support (inliers) for possible affine 

transformations 
• e.g., “success” if find an affine transformation with > N inlier 

correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 
– Verify parameters with enough votes

Kristen Grauman

Voting
• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.
• Voting is a general technique where we let the features 

vote for all models that are compatible with it.
– Cycle through features, cast votes for model parameters.
– Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features.

Kristen Grauman
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Difficulty of line fitting

Kristen Grauman

Hough Transform for line fitting
• Given points that belong to a line, what 

is the line?
• How many lines are there?
• Which points belong to which lines?
• Hough Transform is a voting 

technique that can be used to answer 
all of these questions.
Main idea: 
1.  Record vote for each possible line 

on which each edge point lies.
2.  Look for lines that get many votes.

Kristen Grauman
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0
– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz
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Finding lines in an image: Hough space

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)
(x1, y1)

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) 
for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space
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Voting: Generalized Hough Transform
• If we use scale, rotation, and translation invariant local 

features, then each feature match gives an alignment 
hypothesis (for scale, translation, and orientation of 
model in image).

Model Novel image
Adapted from Lana Lazebnik

Voting: Generalized Hough Transform
• A hypothesis generated by a single match may be 

unreliable,
• So let each match vote for a hypothesis in Hough space

Model Novel image



9/7/2016

25

Gen Hough Transform details (Lowe’s system)
• Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 
and a model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location
• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
geometric verification 
• Estimate least squares affine transformation 
• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. Slide credit: Lana Lazebnik

Objects recognized, Recognition in 
spite of occlusion

Example result

Background subtract 
for model boundaries

[Lowe]
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Gen Hough vs RANSAC
GHT
• Single correspondence -> 

vote for all consistent 
parameters

• Represents uncertainty in the 
model parameter space

• Linear complexity in number 
of correspondences and 
number of voting cells; 
beyond 4D vote space 
impractical

• Can handle high outlier ratio

RANSAC
• Minimal subset of 

correspondences to 
estimate model -> count 
inliers

• Represents uncertainty 
in image space

• Must search all data 
points to check for inliers 
each iteration

• Scales better to high-d 
parameter spaces

Kristen Grauman
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Video Google System
1. Collect all words within 

query region
2. Inverted file index to find 

relevant frames
3. Compare word counts
4. Spatial verification
Sivic & Zisserman, ICCV 2003
• Demo online at : 

http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html

Query 
region

Retrieved frames

Object retrieval with large vocabularies and fast 
spatial matching, Philbin et al., CVPR 2007

[Philbin CVPR’07]
Query Results from 5k Flickr images (demo available for 100k set)
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World-scale mining of objects and events from 
community photo collections, Quack et al., CIVR 2008

Moulin Rouge

Tour Montparnasse Colosseum

Viktualienmarkt
Maypole

Old Town Square (Prague)

Auto-annotate by connecting to 
content on Wikipedia!
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B. Leibe

Example Applications

Mobile tourist guide
• Self-localization
• Object/building recognition
• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
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Web Demo: Movie Poster Recognition

http://www.kooaba.com/en/products_engine.html#

50’000 movie
posters indexed
Query-by-image
from mobile phone
available in Switzer-
land

Recognition via feature 
matching+spatial verification

Pros: 
• Effective when we are able to find reliable features 

within clutter
• Great results for matching specific instances

Cons:
• Scaling with number of models
• Spatial verification as post-processing – not 

seamless, expensive for large-scale problems
• Not suited for category recognition.

Kristen Grauman
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Summary: instance recognition
• Matching local invariant features

– Useful not only to provide matches for multi-view geometry, but also to find objects and scenes.
• Bag of words representation: quantize feature space to make discrete set of visual words

– Summarize image by distribution of words– Index individual words
• Inverted index: pre-compute index to enable faster search at query time
• [today] Recognition of instances via alignment:

matching local features followed by spatial verification
– Robust fitting : RANSAC, GHT

Kristen Grauman

Rest of today
• Intro to categorization problem
• Object categorization as discriminative classification

a) Boosting + fast face detection example
b) Nearest neighbors + scene recognition example
c) Support vector machines + pedestrian detection example

i. Pyramid match kernels, spatial pyramid matchd) Convolutional neural networks + ImageNet example
• Some new representations along the way

• Rectangular filters
• GIST
• HOG
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What does recognition involve?

Slide credit:
Fei-Fei Li

Detection: are there people?

Slide credit:
Fei-Fei Li
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Activity: What are they doing?

Slide credit:
Fei-Fei Li

Object categorization
mountain

building
tree

banner

vendor
people

street lamp

Slide credit:
Fei-Fei Li
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Instance recognition

Potala 
Palace

A particular 
sign

Slide credit:
Fei-Fei Li

Scene and context categorization
• outdoor
• city
• …

Slide credit:
Fei-Fei Li
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Attribute recognition

flat

gray
made of fabric

crowded
Slide credit:
Fei-Fei Li
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Object Categorization
• Task Description

 “Given a small number of  training images of a category, 
recognize a-priori unknown instances of that category and assign 
the correct category label.”

• Which categories are feasible visually?

German
shepherd

animaldog living
being

“Fido”



9/7/2016

35

Per
cep

tua
l an

d S
ens

ory
 Au

gm
ent

ed 
Com

put
ing

Vis
ua

l O
bje

ct 
Re

co
gn

itio
n T

uto
ria

l

K. Grauman, B. LeibeK. Grauman, B. Leibe

Visual Object Categories
• Basic Level Categories in human categorization 

[Rosch 76, Lakoff 87]
 The highest level at which category members have similar 

perceived shape
 The highest level at which a single mental image reflects the 

entire category
 The level at which human subjects are usually fastest at 

identifying category members
 The first level named and understood by children 
 The highest level at which a person uses similar motor actions 

for interaction with category members
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Visual Object Categories
• Basic-level categories in humans seem to be defined 

predominantly visually.
• There is evidence that humans (usually)

start with basic-level categorization 
before doing identification.
 Basic-level categorization is easier

and faster for humans than object
identification!

 How does this transfer to automatic 
classification algorithms? Basic level

Individual 
level

Abstract 
levels

“Fido”

dog

animal

quadruped

German
shepherd Doberman

cat cow

…

…

……

… …
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How many object categories are there?

Biederman 1987Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Other Types of Categories
• Functional Categories

 e.g. chairs = “something you can sit on”

Challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class 
appearanceOcclusions
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Challenges: 
context and human experience

Context cues

Challenges:
context and human experience

Context cues Function Dynamics
Video credit: J. Davis
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Challenges: complexity
• Millions of pixels in an image
• 30,000 human recognizable object categories
• 30+ degrees of freedom in the pose of articulated objects (humans)
• Billions of images online
• 300 hours of new video on YouTube per minute
• …
• About half of the cerebral cortex in primates is devoted to processing visual information [Fellemanand van Essen 1991]

Challenges: learning with 
minimal supervision MoreLess
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Slide from Pietro Perona, 2004 Object Recognition workshop

Slide from Pietro Perona, 2004 Object Recognition workshop
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Recognizing flat, textured 
objects (like books, CD 

covers, posters)

Reading license plates, 
zip codes, checks

Fingerprint recognition

Frontal face detection

What kinds of things work best today?

What kinds of things work best today?
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Evolution of methods

• Hand-crafted models
• 3D geometry
• Hypothesize and align

• Hand-crafted features
• Learned models
• Data-driven

• “End-to-end” learning of features and models*,**

* Labeled data availability** Architecture design decisions, parameters.

Generic category recognition:
basic framework

• Build/train object model
– (Choose a representation)
– Learn or fit parameters of model / classifier 

• Generate candidates in new image
• Score the candidates
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Window-based models
Generating and scoring candidates

Car/non-car 
Classifier

Kristen Grauman

Window-based object detection

Car/non-car 
Classifier

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier
Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman
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Object recognition as classification
• What classifier?

– Factors in choosing:
• Generative or discriminative model?
• Data resources – how much training data?  
• How is the labeled data prepared?
• Training time allowance
• Test time requirements – real-time?
• Fit with the representation

Kristen Grauman

Discriminative classifies

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005, Hays 2008, 
Torralba 2008,…...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998, 
Krizhevsky 2012…
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 2001, Lazebnik 2006…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Kristen Grauman
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• What categories are amenable to window-
based classification?
– Similar to specific object matching, we expect 

spatial layout to be roughly preserved.
– Unlike specific object matching, by training 

classifiers we attempt to capture intra-class variation 
or determine required discriminative features.

Kristen Grauman

Object recognition as classification

What categories are amenable to 
window-based reps?

Kristen Grauman
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Window-based models:
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection
Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros

Main idea:
– Represent local texture with efficiently computable 

“rectangular” features within window of interest
– Select discriminative features to be weak classifiers
– Use boosted combination of them as final classifier
– Form a cascade of such classifiers, rejecting clear 

negatives quickly

Viola-Jones face detector

Kristen Grauman
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Boosting  intuition

Weak 
Classifier 1

Slide credit: Paul Viola

Boosting  illustration

Weights
Increased
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Boosting  illustration

Weak 
Classifier 2

Boosting  illustration

Weights
Increased
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Boosting  illustration

Weak 
Classifier 3

Boosting  illustration

Final classifier is 
a combination of weak 
classifiers
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Boosting: training
• Initially, weight each training example equally
• In each boosting round:

– Find the weak learner that achieves the lowest weighted training error
– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 
learners (weight of each learner is directly proportional to 
its accuracy)

• Exact formulas for re-weighting and combining weak 
learners depend on the particular boosting scheme (e.g., 
AdaBoost)

Slide credit: Lana Lazebnik

Boosting: pros and cons
• Advantages of boosting

• Integrates classification with feature selection
• Complexity of training is linear in the number of training 

examples
• Flexibility in the choice of weak learners, boosting scheme
• Testing is fast
• Easy to implement

• Disadvantages
• Needs many training examples
• Often found not to work as well as an alternative 

discriminative classifier, support vector machine (SVM), or 
CNNs

– especially for many-class problems

Slide credit: Lana Lazebnik
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Viola-Jones detector: features
Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time.

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman

Computing sum within a rectangle
• Let A,B,C,D be the values of the integral image at the corners of a rectangle
• Then the sum of original image values within the rectangle can be computed as:

sum = A – B – C + D
• Only 3 additions are required for any size of rectangle!

D B

C A

Lana Lazebnik
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Viola-Jones detector: features
Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time
Avoid scaling images 
scale features directly 
for same cost

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman

Considering all 
possible filter 
parameters: position, 
scale, and type: 
180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?
Use AdaBoost both to select the informative 
features and to form the classifier

Viola-Jones detector: features

Kristen Grauman
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Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Outputs of a possible 
rectangle feature on 
faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman
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First two features 
selected

Viola-Jones Face Detector: Results
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• Even if the filters are fast to compute, each new 
image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative rates early on
• Apply less accurate but faster classifiers first to immediately 

discard windows that clearly appear to be negative
Kristen Grauman
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Viola-Jones detector: summary

Train with 5K positives, 350M negativesReal-time detector using 38 layer cascade6061 features in all layers
[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of 
classifiers with 

AdaBoost

Selected features, 
thresholds, and weights

New image

Kristen Grauman

Viola-Jones detector: summary
• A seminal approach to real-time object detection 
• Training is slow, but detection is very fast
• Key ideas

 Integral images for fast feature evaluation
 Boosting for feature selection
 Attentional cascade of classifiers for fast rejection of non-

face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001. 
P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
Per

cep
tua

l an
d S

ens
ory

 Au
gm

ent
ed 

Com
put

ing
Vis

ua
l O

bje
ct 

Re
co

gn
itio

n T
uto

ria
l

Vis
ua

l O
bje

ct 
Re

co
gn

itio
n T

uto
ria

l

Detecting profile faces?
Can we use the same detector?
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Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example using Viola-Jones detector

Frontal faces detected and then tracked,  character 
names inferred with alignment of script and subtitles.
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Consumer application: iPhoto

http://www.apple.com/ilife/iphoto/
Slide credit: Lana Lazebnik
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Consumer application: iPhoto
Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

Consumer application: iPhoto
Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik
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Privacy Gift Shop – CV Dazzle

http://www.wired.com/2015/06/facebook-can-recognize-even-dont-show-face/ 
Wired, June 15, 2015 Slide credit: Kristen Grauman

Privacy Visor

http://www.3ders.org/articles/20150812-japan-3d-printed-privacy-visors-
will-block-facial-recognition-software.html Slide credit: Kristen Grauman



9/7/2016

62

Window-based models:
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection
Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros

Slide credit: Kristen Grauman

Nearest Neighbor classification
• Assign label of nearest training data point to each 

test data point 

Voronoi partitioning of feature space for 2-category 2D data

from Duda et al.

Black = negative
Red = positive Novel test example

Closest to a 
positive example 
from the training 
set, so classify it 
as positive.
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K-Nearest Neighbors classification

k = 5

Source: D. Lowe

• For a new point, find the k closest points from training data
• Labels of the k points “vote” to classify

If query lands here, the 5 
NN consist of 3 negatives 
and 2 positives, so we 
classify it as negative.

Black = negative
Red = positive

Where in the World?

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
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Where in the World?

Slide credit: James Hays

Where in the World?

Slide credit: James Hays
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6+ million geotagged photosby 109,788 photographers

Annotated by Flickr users
Slide credit: James Hays

6+ million geotagged photosby 109,788 photographers

Annotated by Flickr users
Slide credit: James Hays
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Which scene properties are relevant?

A scene is a single surface that can be
represented by global (statistical) descriptors

Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

Slide Credit: Aude Olivia



9/7/2016

67

Global texture: 
capturing the “Gist” of the scene

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

Capture global image properties while keeping some spatial 
information

Gist 
descriptor

Which scene properties are relevant?
• Gist scene descriptor
• Color Histograms  - L*A*B* 4x14x14 histograms
• Texton Histograms – 512 entry, filter bank based
• Line Features – Histograms of straight line stats
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

Slide credit: James Hays
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays
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The Importance of Data

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]Slide credit: James Hays

Nearest neighbors: pros and cons
• Pros: 

– Simple to implement
– Flexible to feature / distance choices
– Naturally handles multi-class cases
– Can do well in practice with enough representative data

• Cons:
– Large search problem to find nearest neighbors
– Storage of data
– Must know we have a meaningful distance function

Kristen Grauman
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Today
• Intro to categorization problem
• Object categorization as discriminative classification

• Boosting + fast face detection example
• Nearest neighbors + scene recognition example
• Support vector machines + pedestrian detection example

• Pyramid match kernels, spatial pyramid match
• Convolutional neural networks + ImageNet example

• Some new representations along the way
• Rectangular filters
• GIST
• HOG

Window-based models:
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection
Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros
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Linear classifiers

Linear classifiers
• Find linear function to separate positive and 

negative examples

0:negative
0:positive




b
b

ii
ii

wxx
wxx

Which line
is best?
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Support Vector Machines (SVMs)
• Discriminative 

classifier based on 
optimal separating 
line (for 2d case)

• Maximize the margin
between the positive 
and negative training 
examples

Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive



by
by

iii
iii

wxx
wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

For support, vectors, 1 bi wx
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Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive



by
by

iii
iii

wxx
wxx

Margin MSupport vectors

For support, vectors, 1 bi wx
Distance between point 
and line: ||||

||
w
wx bi 

www
211 Mww

xw 1 bΤ
For support vectors:

Support vector machines
• Want line that maximizes the margin.

1:1)(negative
1:1)( positive



by
by

iii
iii

wxx
wxx

Support vectors

For support, vectors, 1 bi wx
Distance between point 
and line: ||||

||
w
wx bi 

Therefore, the margin is  2 / ||w||
Margin M
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Finding the maximum margin line
1. Maximize margin 2/||w||
2. Correctly classify all training data points:

Quadratic optimization problem:
Minimize
Subject to  yi(w·xi+b) ≥ 1

wwT
2
1

1:1)(negative
1:1)( positive



by
by

iii
iii

wxx
wxx

Finding the maximum margin line
• Solution:  i iii y xw 

Support 
vector

learned
weight
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Finding the maximum margin line
• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

 i iii y xw 
byb i iii   xxxw 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

 by
xf

ii 
  xx

xw
i isign         

b)(sign   )(


Dalal & Triggs, CVPR 2005

• Map each grid cell in the 
input window to a histogram 
counting the gradients per 
orientation.
• Train a linear SVM using 
training set of pedestrian vs. 
non-pedestrian windows.

Code available: 
http://pascal.inrialpes.fr/soft/olt/

Person detection
with HoG’s & linear SVM’s



9/7/2016

78

HoG descriptor

Code available:  http://pascal.inrialpes.fr/soft/olt/Dalal & Triggs, CVPR 2005 

Person detection
with HoGs & linear SVMs

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, 
International Conference on Computer Vision & Pattern Recognition - June 2005 

• http://lear.inrialpes.fr/pubs/2005/DT05/
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Questions
• What if the data is not linearly separable?
• What if we have more than just two categories?

Non-linear SVMs
 Datasets that are linearly separable with some noise 

work out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 
space:

0 x

0 x

0 x

x2
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Nonlinear SVMs
• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 
function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in the 
original feature space:

bKy
i

iii  ),( xx

Example
2-dimensional vectors x=[x1   x2]; 
let K(xi,xj)=(1 + xiTxj)2

Need to show that K(xi,xj)= φ(xi) Tφ(xj):
K(xi,xj)=(1 + xiTxj)2,
= 1+ xi12xj12 + 2 xi1xj1 xi2xj2+ xi22xj22 + 2xi1xj1 + 2xi2xj2
= [1  xi12  √2 xi1xi2  xi22  √2xi1  √2xi2]T 

[1  xj12  √2 xj1xj2  xj22  √2xj1  √2xj2] 
= φ(xi) Tφ(xj),   

where φ(x) = [1  x12  √2 x1x2  x22   √2x1  √2x2]
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Examples of kernel functions
 Linear:

 Gaussian RBF:

 Histogram intersection:

)2exp()( 2

2


ji

ji
xx,xxK 


k

jiji kxkxxxK ))(),(min(),(

j
T

iji xxxxK ),(

SVMs for recognition
1. Define your representation for each 

example.
2. Select a kernel function.
3. Compute pairwise kernel values 

between labeled examples
4. Use this “kernel matrix” to solve for 

SVM support vectors & weights.
5. To classify a new example: compute 

kernel values between new input 
and support vectors, apply weights, 
check sign of output.

Kristen Grauman
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Local feature correspondence useful similarity 
measure for generic object categories

Kristen Grauman

What about a matching kernel?

Partially matching sets of features

We introduce an approximate matching kernel that 
makes it practical to compare large sets of features 
based on their partial correspondences.

Optimal match:  O(m3)
Greedy match:   O(m2 log m)
Pyramid match: O(m)
(m=num pts)

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal & 
Varadarajan, …]

Kristen Grauman
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Pyramid match: main idea

descriptor 
space

Feature space partitions 
serve to “match” the local 
descriptors within 
successively wider regions.

Kristen Grauman

Pyramid match: main idea

Histogram intersection 
counts number of possible 
matches at a given 
partitioning.Kristen Grauman
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Pyramid match kernel

• For similarity, weights inversely proportional to bin size
(or may be learned)

• Normalize these kernel values to avoid favoring large sets

[Grauman & Darrell, ICCV 2005]

measures 
difficulty of a 

match at level  
number of newly matched 

pairs at level

Pyramid match kernel

optimal partial 
matching

Optimal match:  O(m3)
Pyramid match: O(mL)

Kristen Grauman
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Unordered sets of local features:
No spatial layout preserved!

Too much? Too little?

[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.
• Provides some loose (global) spatial layout 

information

Spatial pyramid match
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[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.
• Provides some loose (global) spatial layout 

information

Spatial pyramid match

Sum over PMKs 
computed in image 
coordinate space, 
one per word.

• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

Spatial pyramid match
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• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

• Sensitive to global shifts of the view

Confusion table

Spatial pyramid match

Questions
• What if the data is not linearly separable?
• What if we have more than just two categories?
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Multi-class SVMs
• Achieve multi-class classifier by combining a number of 

binary classifiers
• One vs. all

– Training: learn an SVM for each class vs. the rest
– Testing: apply each SVM to test example and assign 

to it the class of the SVM that returns the highest 
decision value

• One vs. one
– Training: learn an SVM for each pair of classes
– Testing: each learned SVM “votes” for a class to 

assign to the test example
Kristen Grauman

SVMs: Pros and cons
• Pros

• Kernel-based framework is very powerful, flexible
• Often a sparse set of support vectors – compact at test time
• Work very well in practice, even with very small training 

sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs
• Can be tricky to select best kernel function for a problem
• Computation, memory 

– During training time, must compute matrix of kernel values for 
every pair of examples

– Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik
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Basic recognition models so far

Instances: 
recognition by 

alignment
Categories: 

Holistic appearance 
models (and sliding 
window detection)

Kristen Grauman

Summary so far
• Basic pipeline for window-based detection

– Model/representation/classifier choice
– Sliding window and classifier scoring

• Discriminative classifiers for window-based representations 
– Boosting

• Viola-Jones face detector example
– Nearest neighbors

• Scene recognition example
• 80M Tiny Images studies

– Support vector machines
• HOG person detection example 
• Pyramid match kernel
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Today
• Intro to categorization problem
• Object categorization as discriminative classification

• Boosting + fast face detection example
• Nearest neighbors + scene recognition example
• Support vector machines + pedestrian detection example

• Pyramid match kernels, spatial pyramid match
• Convolutional neural networks + ImageNet example

• Some new representations along the way
• Rectangular filters
• GIST
• HOG

Evolution of methods

• Hand-crafted models
• 3D geometry
• Hypothesize and align

• Hand-crafted features
• Learned models
• Data-driven

• “End-to-end” learning of features and models*,**
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Traditional Image Categorization: Training phase
Training LabelsTraining 

Images

Classifier Training

Training
Image Features Trained Classifier

Jia-Bin Huang and Derek Hoiem, UIUC

Training LabelsTraining 
Images

Classifier Training

Training
Image Features Trained Classifier

Image Features

Testing

Test Image
Outdoor
PredictionTrained Classifier

Traditional Image Categorization: Testing phase
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Features have been key

SIFT [Lowe IJCV 04] HOG [Dalal and Triggs CVPR 05]

SPM [Lazebnik et al. CVPR 06] Textons

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, …..
and many others:

• Each layer of hierarchy extracts features from output of previous layer
• All the way from pixels  classifier
• Layers have the (nearly) same structure

• Train all layers jointly

Learning a Hierarchy of Feature Extractors 

Layer 1Layer 1 Layer 2Layer 2 Layer 3Layer 3 Simple 
Classifier

Image/Video
Pixels

Image/video Labels

Slide: Rob Fergus
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Learning Feature Hierarchy
Goal: Learn useful higher-level features from images

Feature representation

Input data

1st layer  “Edges”

2nd layer  “Object parts”

3rd layer  “Objects”

Pixels
Lee et al., ICML 2009;  
CACM 2011

Slide: Rob Fergus

Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier

Jia-Bin Huang and Derek Hoiem, UIUC
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Simple, Complex and Hypercomplex cells

David H. Hubel and Torsten Wiesel

David Hubel's Eye, Brain, and Vision

Suggested a hierarchy of feature detectors 
in the visual cortex, with higher level features 
responding to patterns of activation in lower 
level cells, and propagating activation 
upwards to still higher level cells.

Jia-Bin Huang and Derek Hoiem, UIUC

Hubel/Wiesel Architecture and Multi-layer Neural Network

Hubel and Weisel’s architecture Multi-layer Neural Network
- A non-linear classifier

Jia-Bin Huang and Derek Hoiem, UIUC
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Neuron: Linear Perceptron
 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Slide credit: Pieter Abeel and Dan Klein

Multi-layer Neural Network
• A non-linear classifier
• Training: find network weights w to minimize the loss, e.g., error between true training labels ݕ and estimated labels ࢞ ݂࢝

• Minimization can be done by gradient descent provided ݂ is differentiable
• This training method is called back-propagation

Jia-Bin Huang and Derek Hoiem, UIUC
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Learning w
 Training examples

 Objective: a misclassification loss, e.g.

 Procedure: 
 Gradient descent / hill climbing

Slide credit: Pieter Abeel and Dan Klein
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein
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Two-layer neural network

Slide credit: Pieter Abeel and Dan Klein

Neural network properties
 Theorem (Universal function approximators): A 

two-layer network with a sufficient number of 
neurons can approximate any continuous 
function to any desired accuracy

 Practical considerations:
 Can be seen as learning the features
 Large number of neurons

 Danger for overfitting
 Hill-climbing procedure can get stuck in bad local 

optima
Slide credit: Pieter Abeel and Dan KleinApproximation by Superpositions of Sigmoidal Function,1989 
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Convolutional Neural Networks (CNN, ConvNet, DCN)
• CNN = a multi-layer neural network with

– Local connectivity:
• Neurons in a layer are only connected to a small region of the layer before it 

– Share weight parameters across spatial positions:
• Learning shift-invariant filter kernels

Image credit: A. KarpathyJia-Bin Huang and Derek Hoiem, UIUC

LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993
Jia-Bin Huang and Derek Hoiem, UIUC
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What is a Convolution?
• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik

Input Image

Convolution (Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks
Feature maps

slide credit: S. Lazebnik
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Input Image

Convolution (Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik

Input Image

Convolution (Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik
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Input Image

Convolution (Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling
Provide translation invariance

Input Image

Convolution (Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

slide credit: S. Lazebnik
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Engineered vs. learned features

ImageImage
Feature extractionFeature extraction

PoolingPooling
ClassifierClassifier
Label

ImageImage
Convolution/poolConvolution/pool
Convolution/poolConvolution/pool
Convolution/poolConvolution/pool
Convolution/poolConvolution/pool
Convolution/poolConvolution/pool

DenseDense
DenseDense
DenseDense

LabelConvolutional filters are trained in a 
supervised manner by back-propagating 
classification error

Jia-Bin Huang and Derek Hoiem, UIUC

SIFT Descriptor
Image Pixels Applyoriented filters

Spatial pool 
(Sum) 

Normalize to unit length
Feature Vector

Lowe [IJCV 2004]

slide credit: R. Fergus
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Spatial Pyramid Matching
SIFTFeatures Filter with Visual Words

Multi-scalespatial pool 
(Sum) 

Max

Classifier

Lazebnik, Schmid, Ponce [CVPR 2006]

slide credit: R. Fergus

AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
Jia-Bin Huang and Derek Hoiem, UIUC
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Applications
• Handwritten text/digits

– MNIST (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese [Ciresan et al. 2012]

• Simpler recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

Slide: R. Fergus

Application: ImageNet

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes
• Images gathered from Internet
• Human labels via Amazon Turk

https://sites.google.com/site/deeplearningcvpr2014 Slide: R. Fergus
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ImageNet Classification 2012
• Krizhevsky et al. -- 16.4% error (top-5)
• Next best (non-convnet) – 26.2% error

35

30

25

20

15

10

5

0 SuperVision ISI Oxford INRIA Amsterdam

Top
-5e

rro
rra

te%

https://sites.google.com/site/deeplearningcvpr2014 Slide: R. Fergus

ImageNet Classification 2013 Results
• http://www.image-net.org/challenges/LSVRC/2013/results.php

0.17
0.16
0.15
0.14
0.13
0.12
0.11

0.1

Test
 err

or(
top

-5)

https://sites.google.com/site/deeplearningcvpr2014
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ImageNet Challenge 2012-2014

Team Year Place Error (top-5) External data
SuperVision – Toronto(7 layers) 2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k
Clarifai – NYU (7 layers) 2013 - 11.7% no
Clarifai 2013 1st 11.2% ImageNet 22k
VGG – Oxford (16 layers) 2014 2nd 7.32% no
GoogLeNet (19 layers) 2014 1st 6.67% no
Human expert* 5.1%

Best non-convnet in 2012: 26.2%

Jia-Bin Huang and Derek Hoiem, UIUC

Industry Deployment
• Used in Facebook, Google, Microsoft
• Image Recognition, Speech Recognition, ….
• Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face  
Verification, CVPR’14

Slide: R. Fergus
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Beyond classification
• Detection
• Segmentation
• Regression 
• Pose estimation 
• Matching patches
• Synthesis
and many more…

Jia-Bin Huang and Derek Hoiem, UIUC

R-CNN: Regions with CNN features
• Trained on ImageNet classification
• Finetune CNN on PASCAL

RCNN [Girshick et al. CVPR 2014]Jia-Bin Huang and Derek Hoiem, UIUC
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Labeling Pixels: Semantic Labels

Fully Convolutional Networks for Semantic Segmentation [Long et al. CVPR 2015] Jia-Bin Huang and Derek Hoiem, UIUC

Labeling Pixels: Edge Detection

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection 
[Bertasius et al. CVPR 2015]Jia-Bin Huang and Derek Hoiem, UIUC
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CNN for Regression

DeepPose [Toshev and Szegedy CVPR 2014]
Jia-Bin Huang and Derek Hoiem, UIUC

CNN as a Similarity Measure for Matching

FaceNet [Schroff et al. 2015]Stereo matching [Zbontar and LeCun CVPR 2015]
Compare patch [Zagoruyko and Komodakis 2015]

Match ground and aerial images 
[Lin et al. CVPR 2015]FlowNet [Fischer et al 2015]Jia-Bin Huang and Derek Hoiem, UIUC
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CNN for Image Generation

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015]Jia-Bin Huang and Derek Hoiem, UIUC

Chair Morphing

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015]Jia-Bin Huang and Derek Hoiem, UIUC
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Recap
• Neural networks / multi-layer perceptrons

– View of neural networks as learning hierarchy of features
• Convolutional neural networks

– Architecture of network accounts for image structure
– “End-to-end” recognition from pixels 
– Together with big (labeled) data and lots of computation major success on benchmarks, image classification and beyond

Announcements
• Reminder: Assignment 1 due Sept 16 11:59 pm on Canvas
• Reminder: Optional CNN/Caffe tutorial on Monday Sept 12, 5-7 pm (here)


