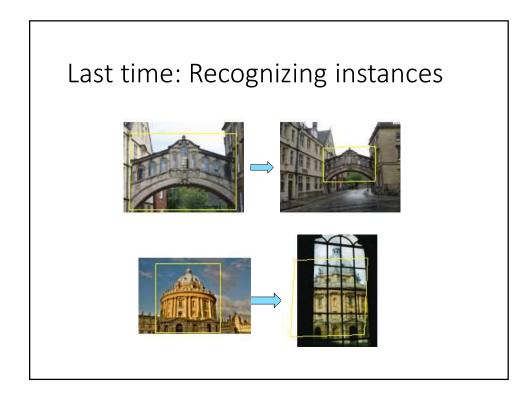
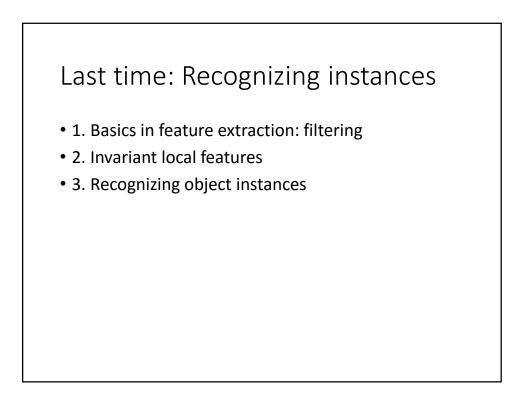
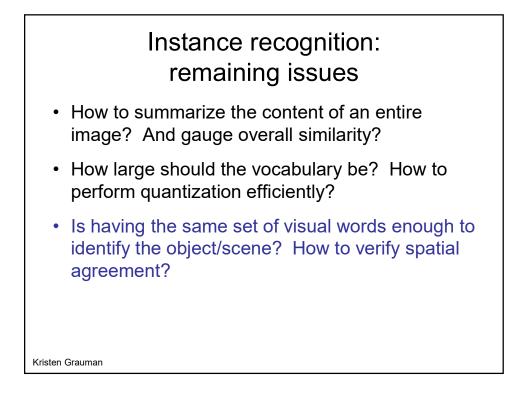


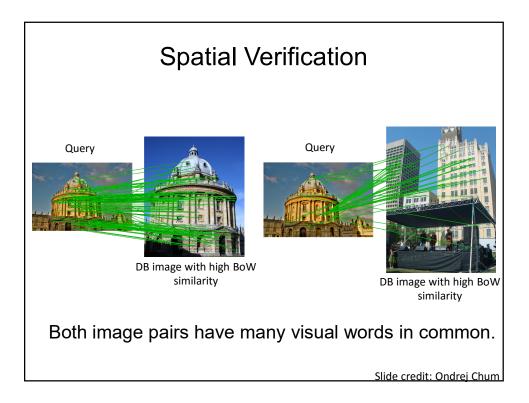
Announcements

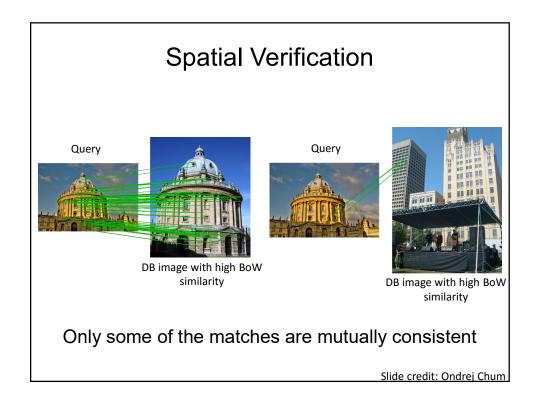
- Reminders:
 - Assignment 1 due Sept 16 11:59 pm on Canvas
 - Optional CNN/Caffe tutorial on Monday Sept 12, 5-7 pm
 - No laptops, phones, tablets, etc. in class
- Thoughts on review sharing?
- Questions about presentations, experiments, discussion proponent/opponent?

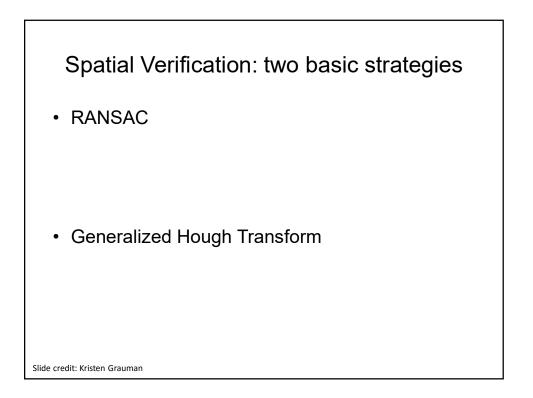


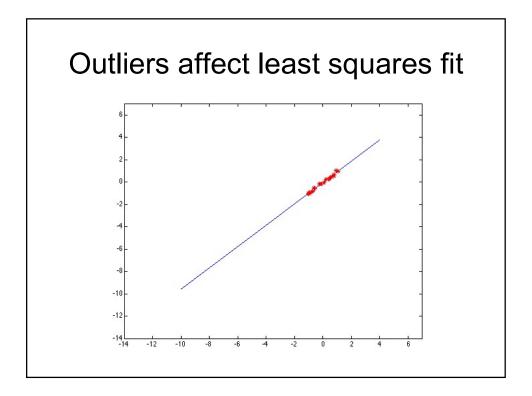


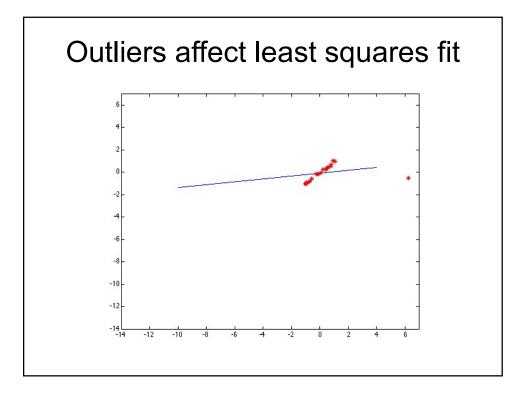












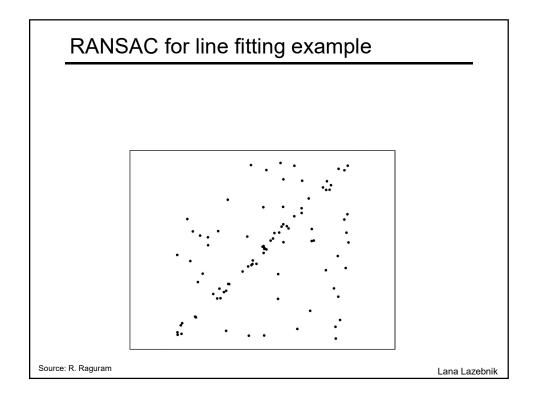
RANSAC

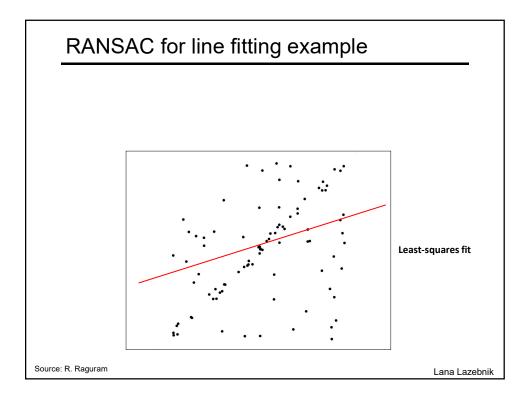
- RANdom Sample Consensus
- **Approach**: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- **Intuition**: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

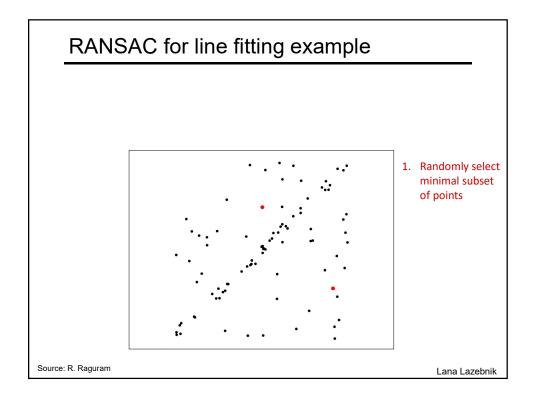
RANSAC for line fitting

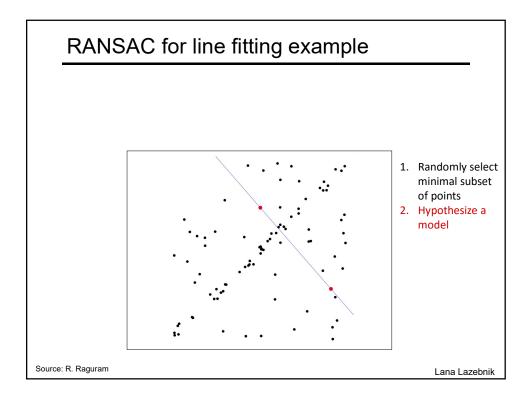
Repeat *N* times:

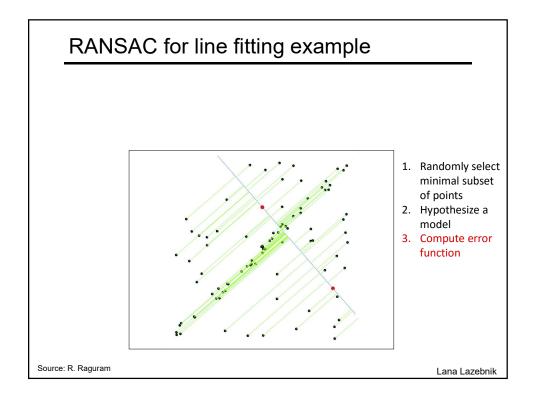
- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers, accept the line and refit using all inliers

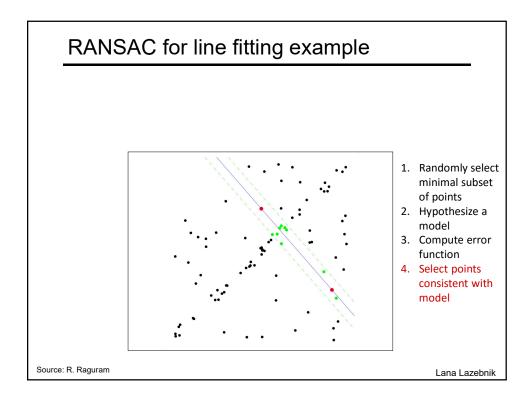


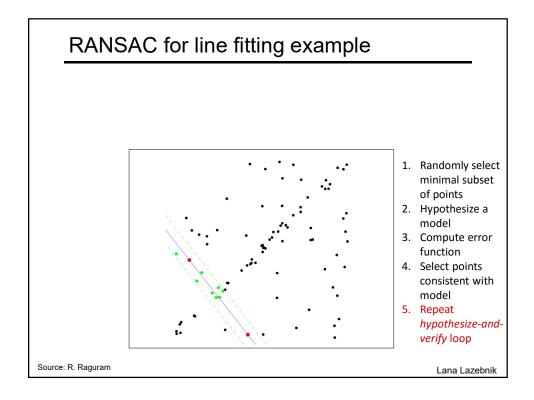


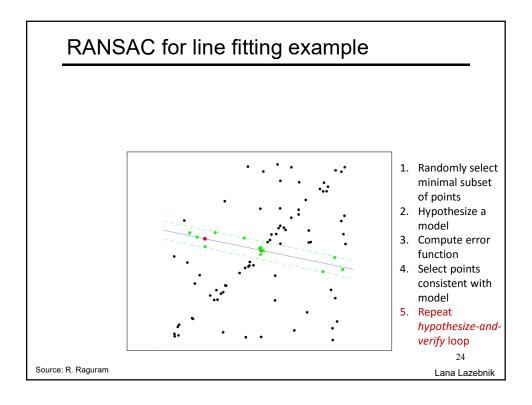


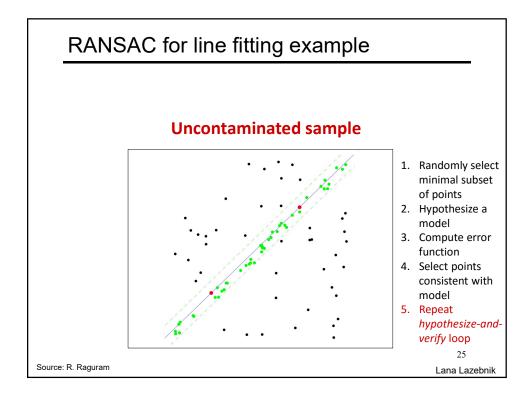


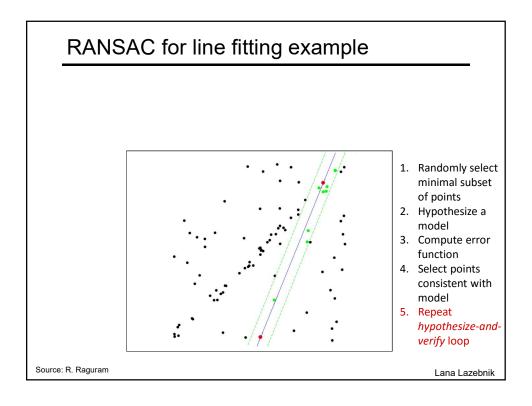








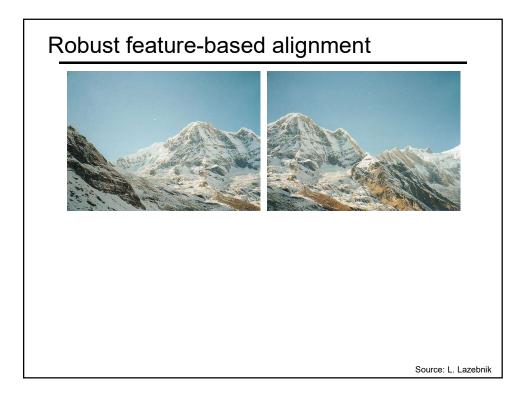


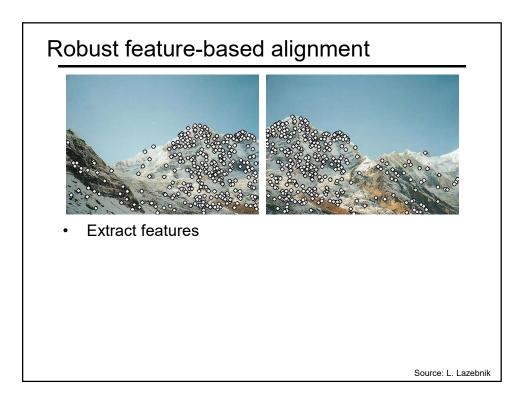


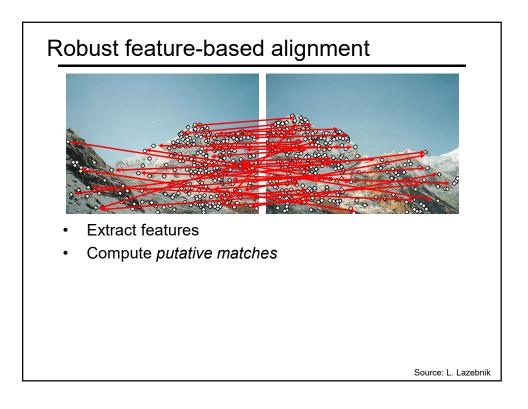
11

That is an example fitting a model (line)...

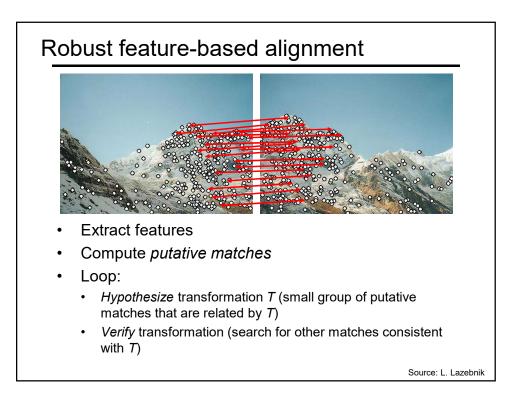
What about fitting a transformation (translation, affine...)?



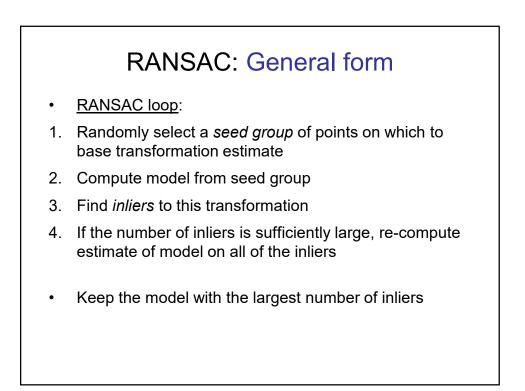


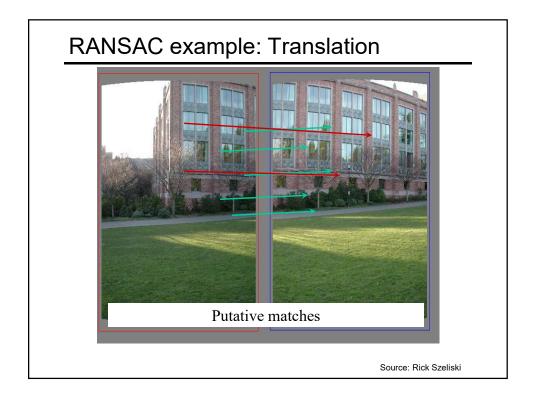


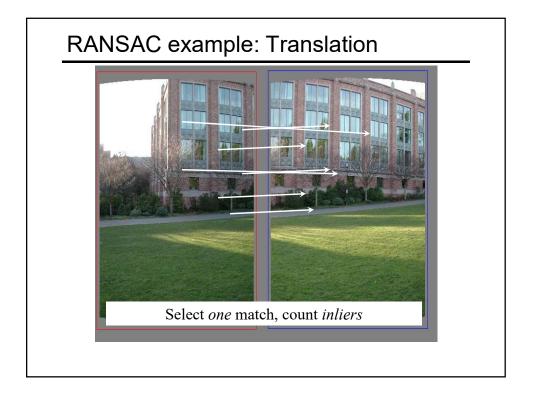
<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item>

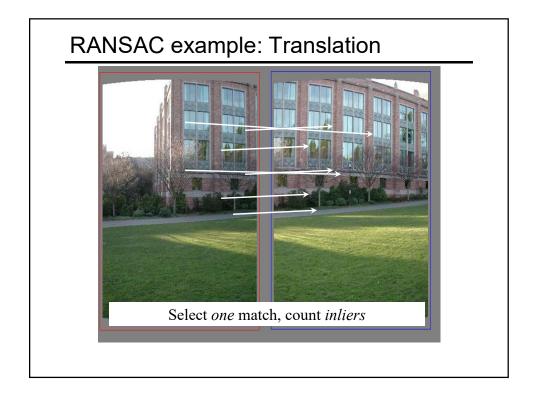


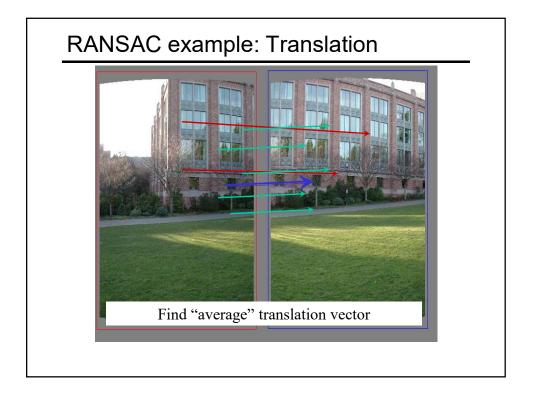
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

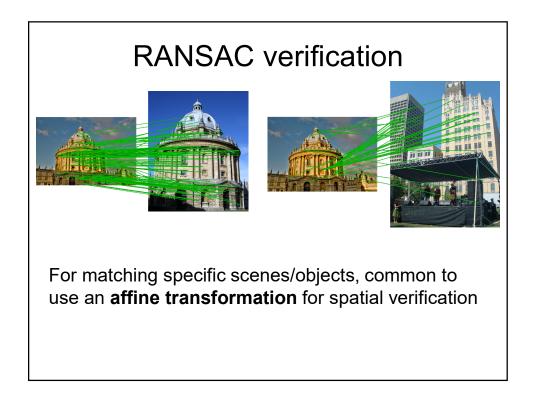


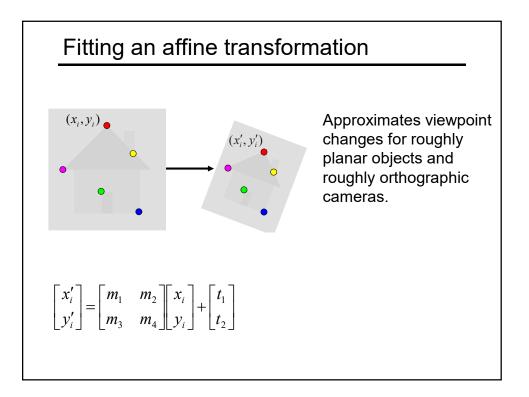


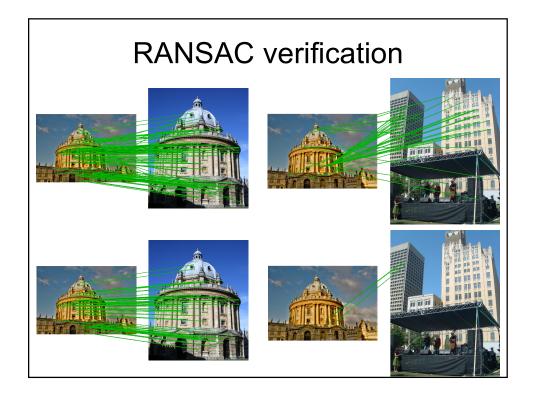


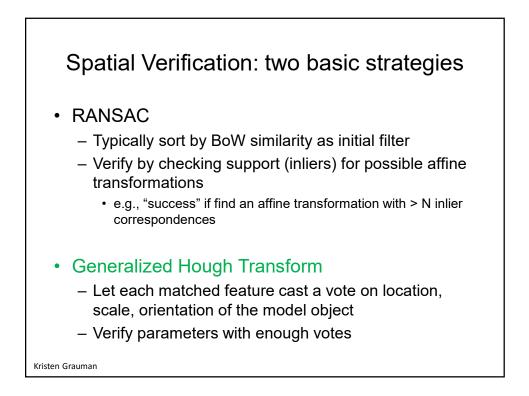


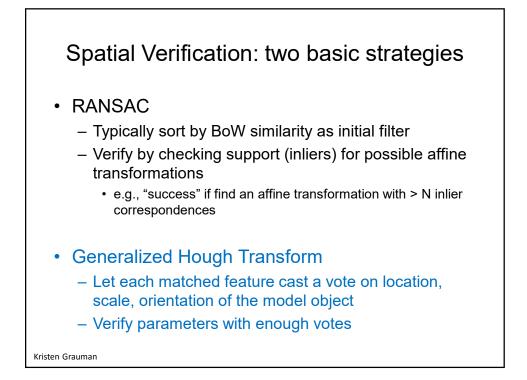


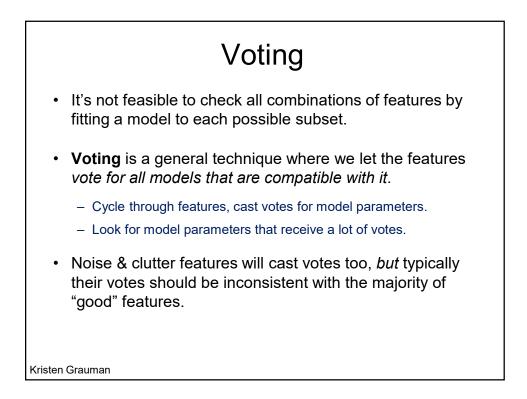


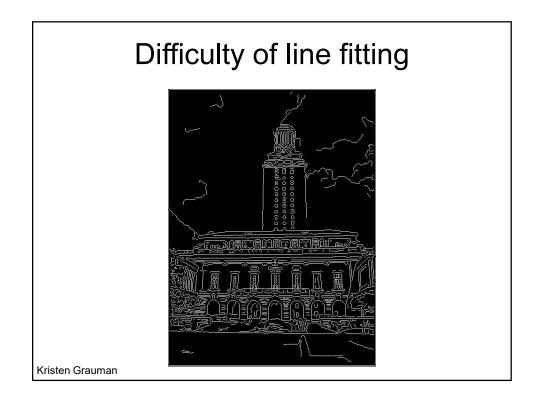


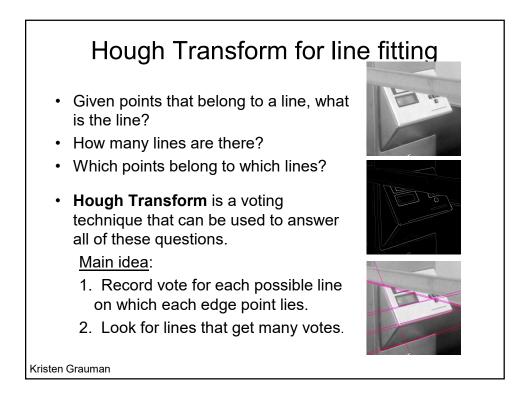


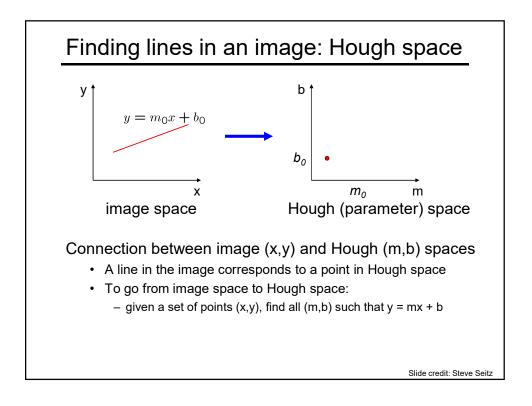


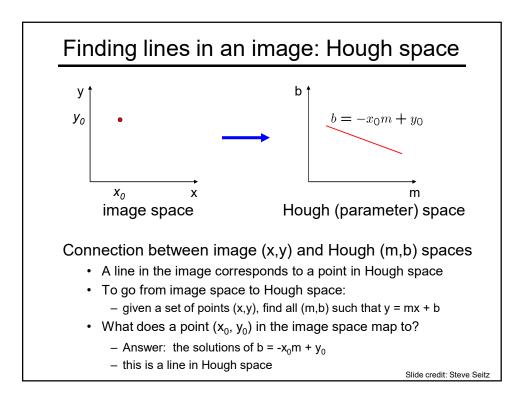


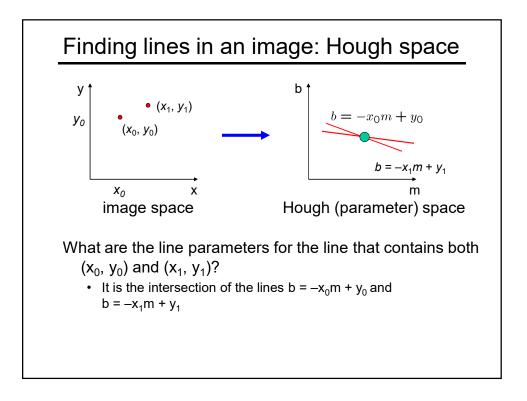


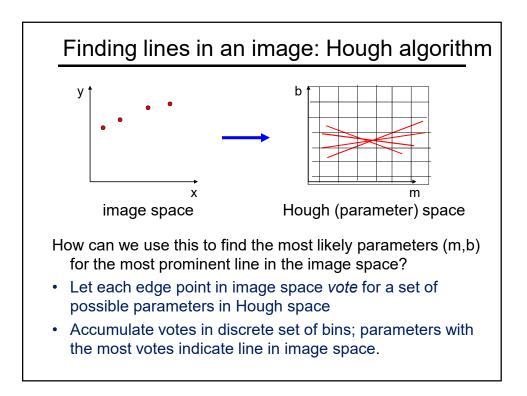






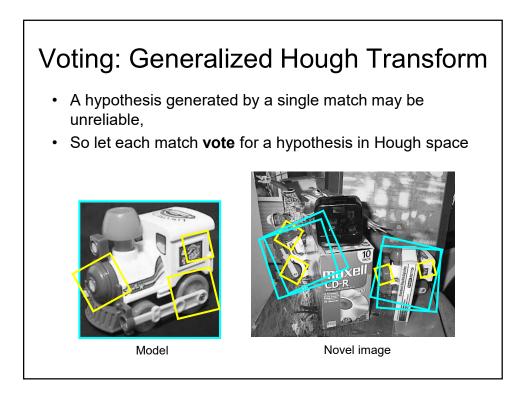


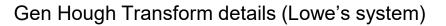




<section-header><section-header><text><image><image><image>

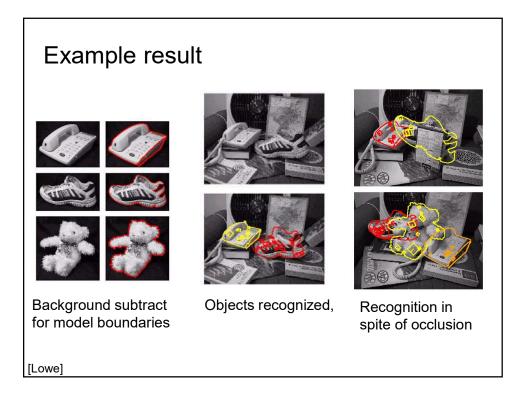
Adapted from Lana La





- **Training phase:** For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- **Test phase:** Let each match btwn a test SIFT feature and a model feature vote in a 4D Hough space
 - Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
 - Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
 - Estimate least squares affine transformation
 - · Search for additional features that agree with the alignment

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.



Gen Hough vs RANSAC

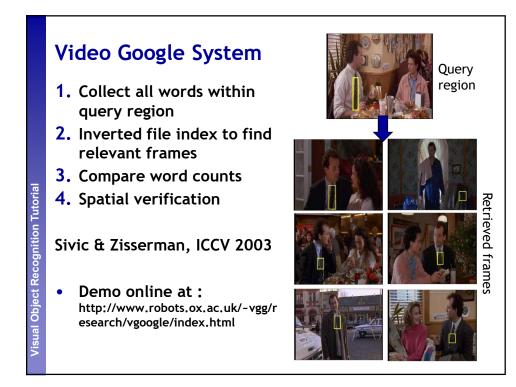
<u>GHT</u>

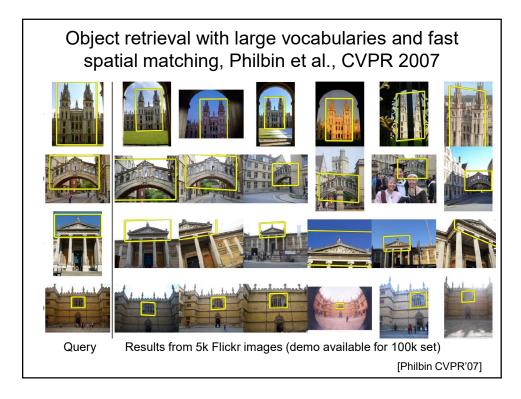
- Single correspondence -> vote for all consistent parameters
- Represents uncertainty in the model parameter space
- Linear complexity in number of correspondences and number of voting cells; beyond 4D vote space impractical
- Can handle high outlier ratio

RANSAC

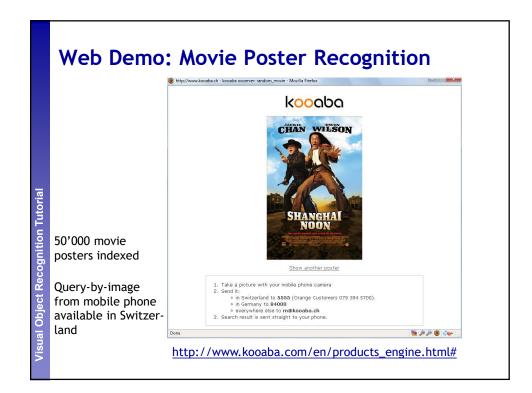
- Minimal subset of correspondences to estimate model -> count inliers
- Represents uncertainty in image space
- Must search all data points to check for inliers each iteration
- Scales better to high-d parameter spaces

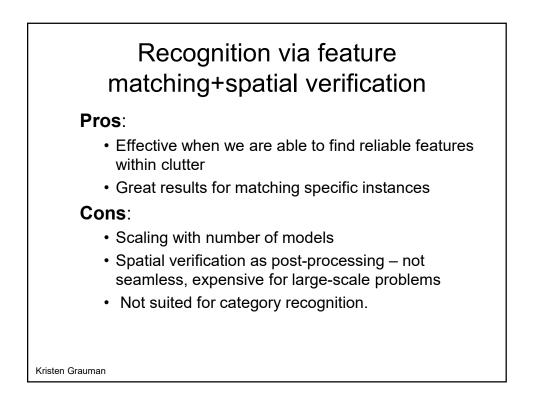
Kristen Grauman

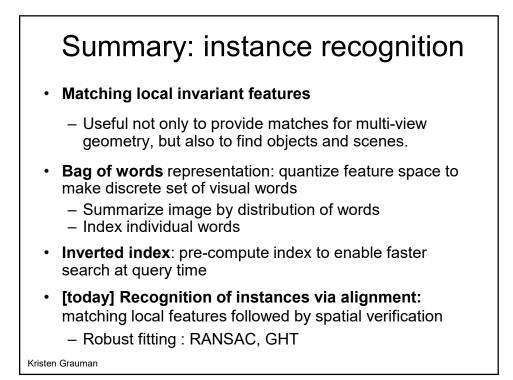


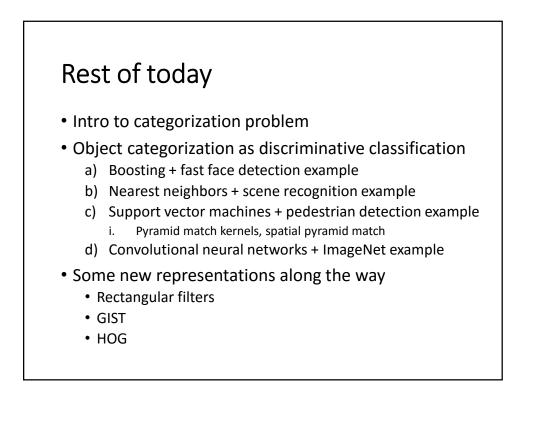


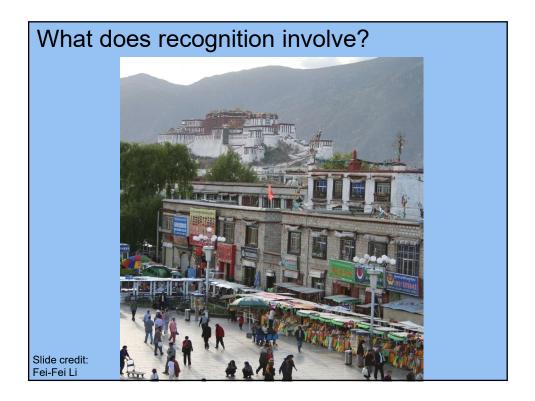
<image><image><image><image><image>

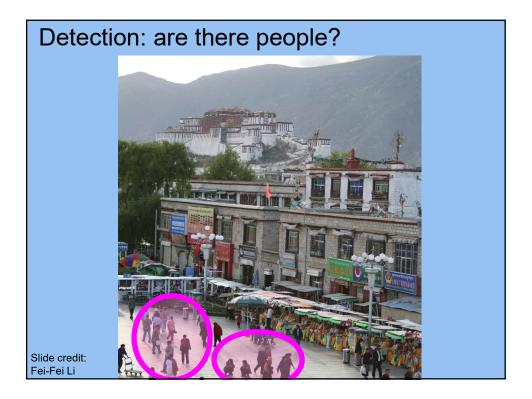


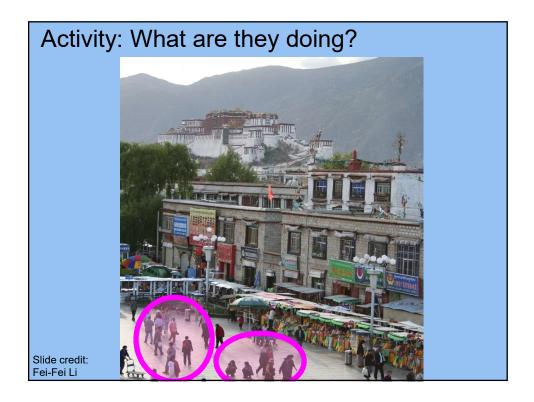


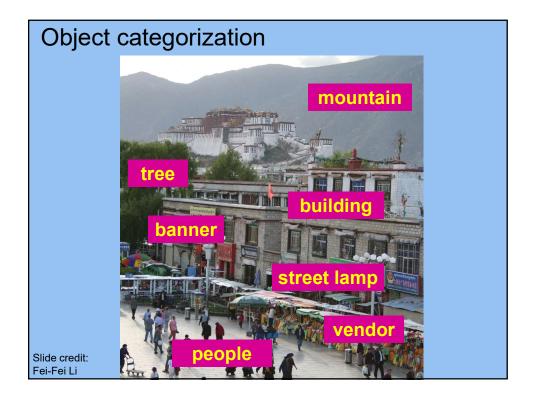


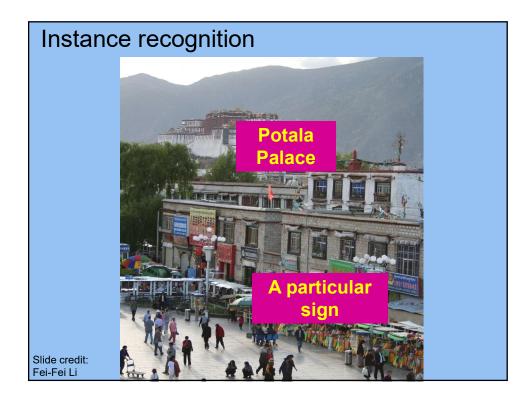


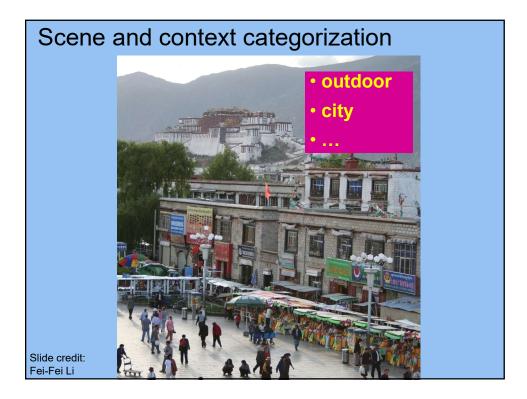


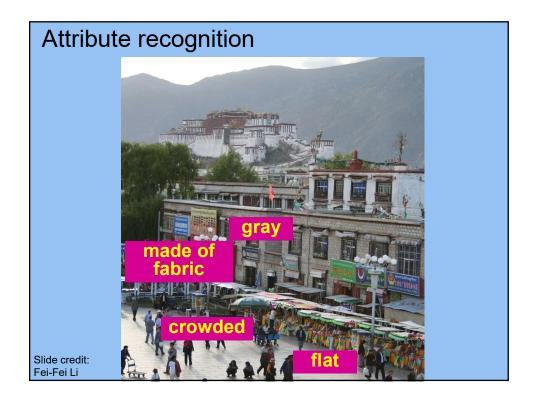


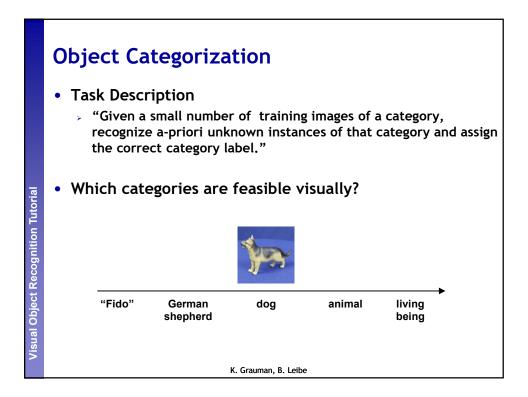








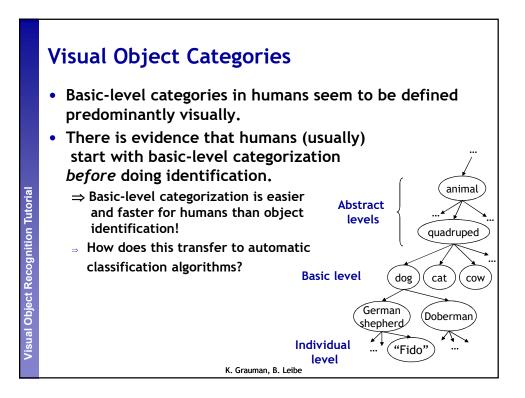


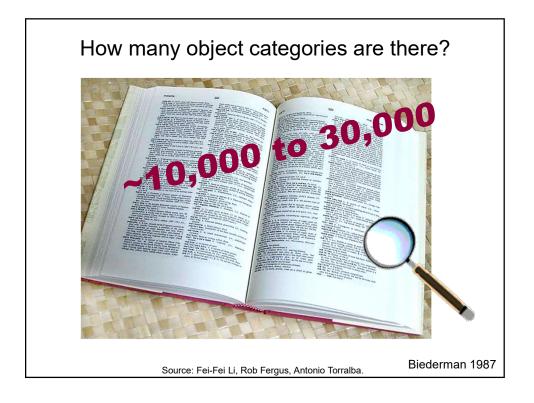


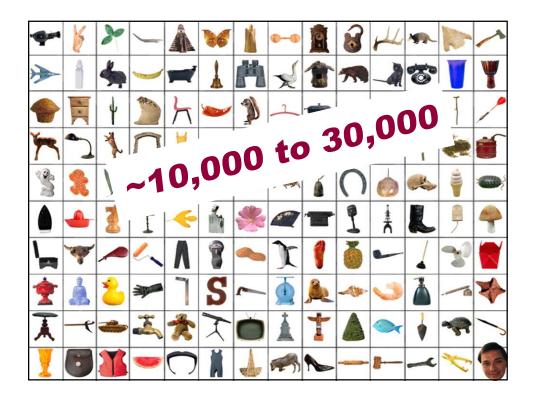
/isual Object Recognition Tutorial

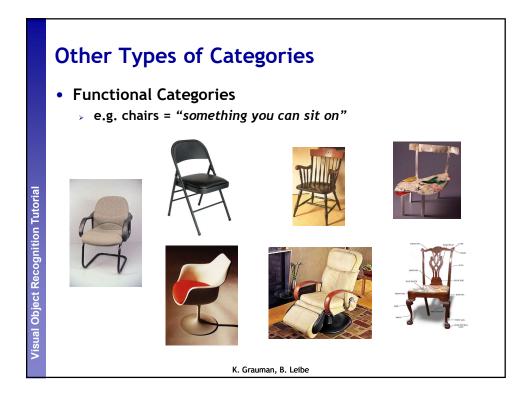
- Basic Level Categories in human categorization [Rosch 76, Lakoff 87]
 - > The highest level at which category members have similar perceived shape
 - The highest level at which a single mental image reflects the entire category
 - > The level at which human subjects are usually fastest at identifying category members
 - > The first level named and understood by children
 - > The highest level at which a person uses similar motor actions for interaction with category members

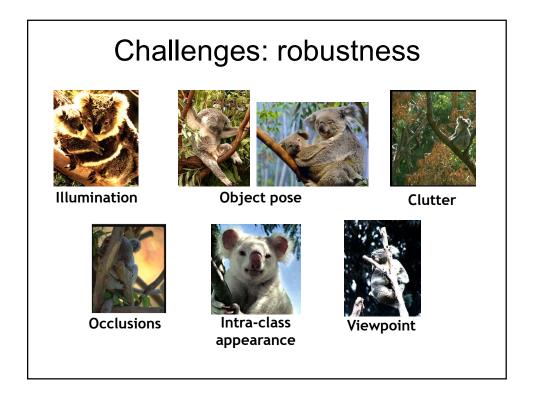
K. Grauman, B. Leibe

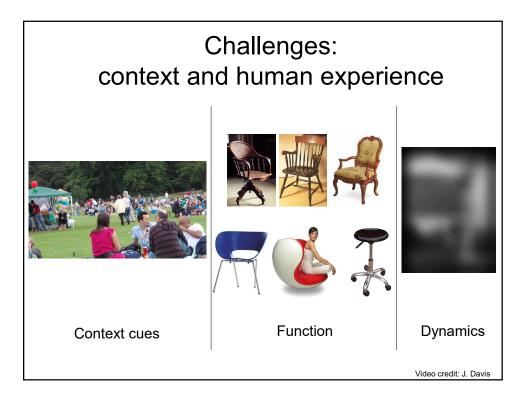


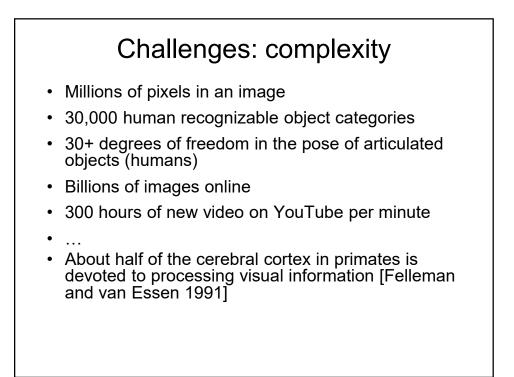


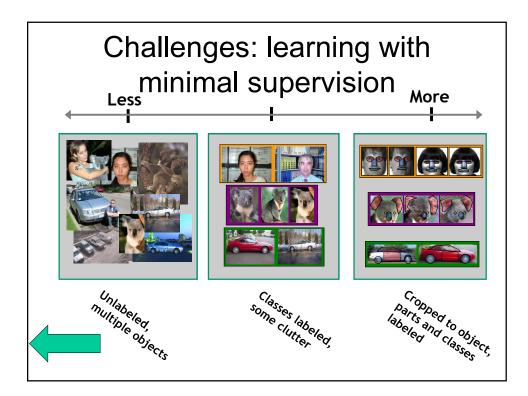


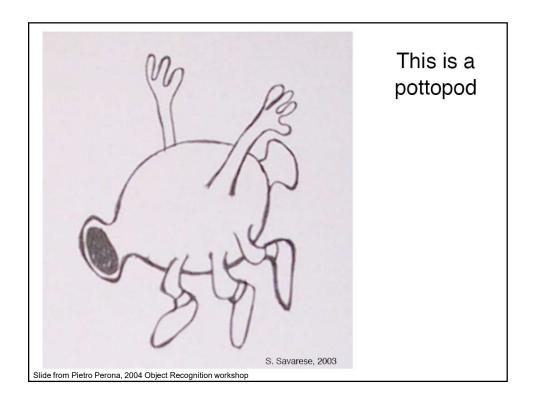


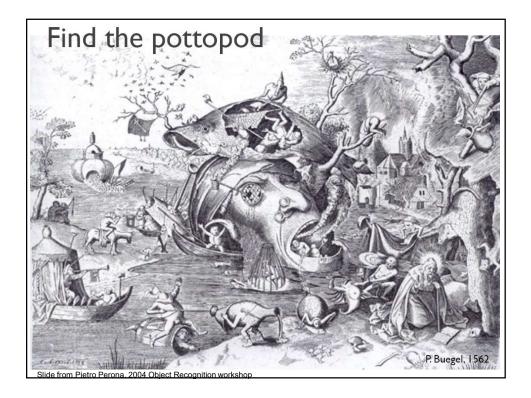


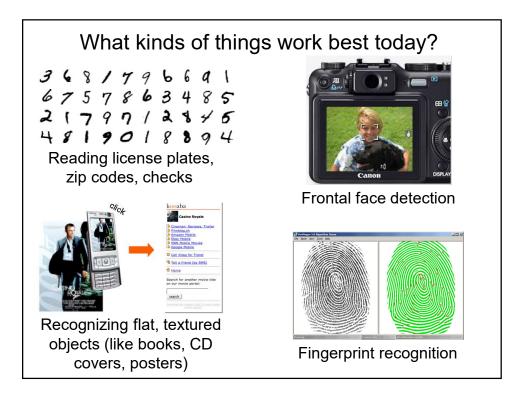


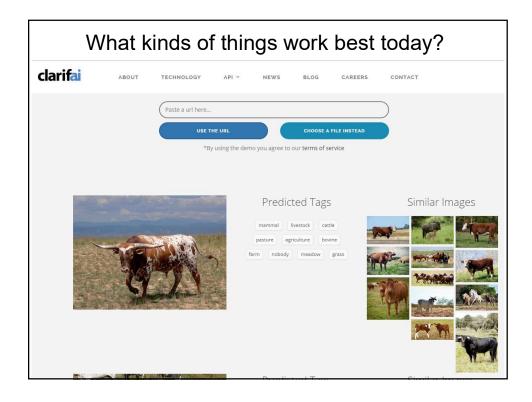








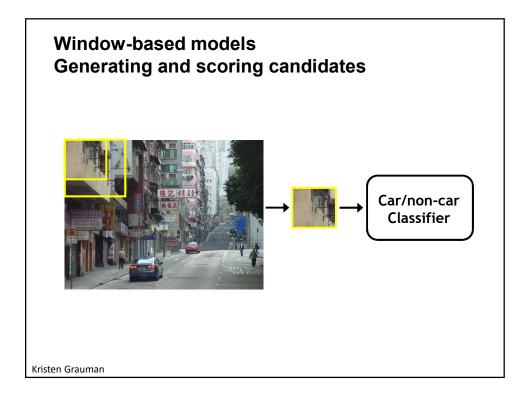


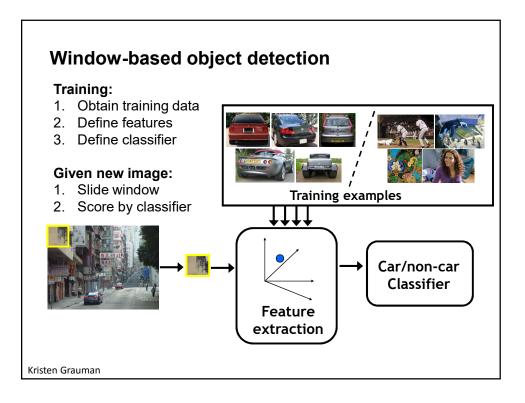




Generic category recognition: basic framework

- Build/train object model
 - (Choose a representation)
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- Score the candidates



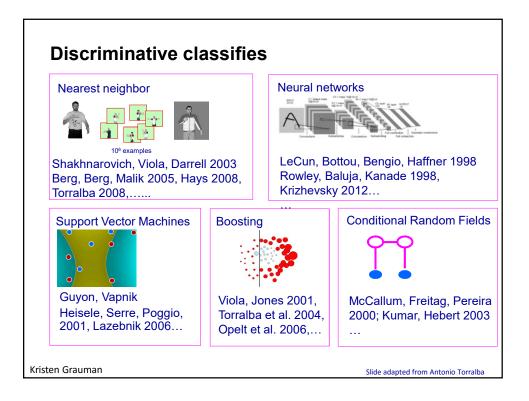


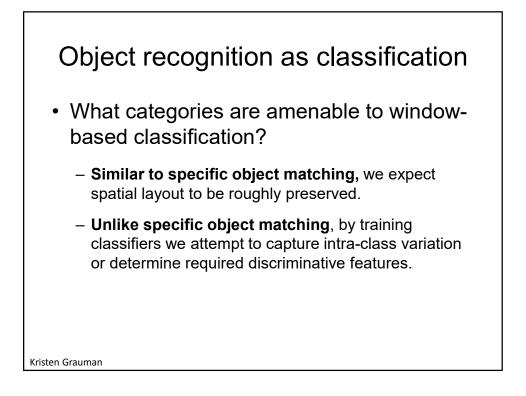
Object recognition as classification

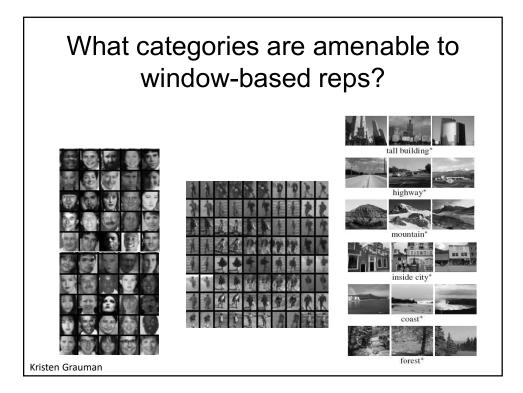
• What classifier?

- Factors in choosing:
 - · Generative or discriminative model?
 - Data resources how much training data?
 - How is the labeled data prepared?
 - Training time allowance
 - Test time requirements real-time?
 - · Fit with the representation

Kristen Grauman







Window-based models: Three landmark case studies

Boosting + face

detection

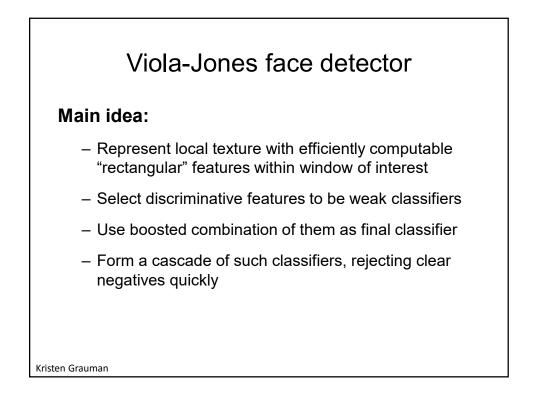
NN + scene Gist classification

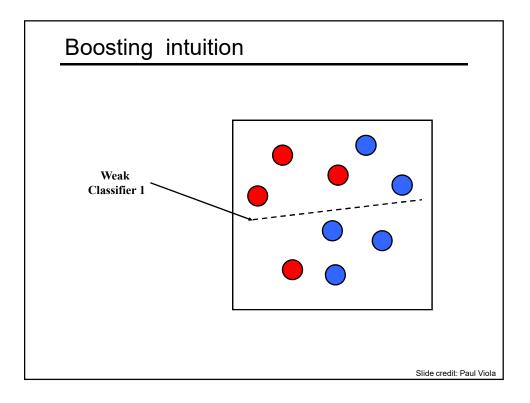
SVM + person detection

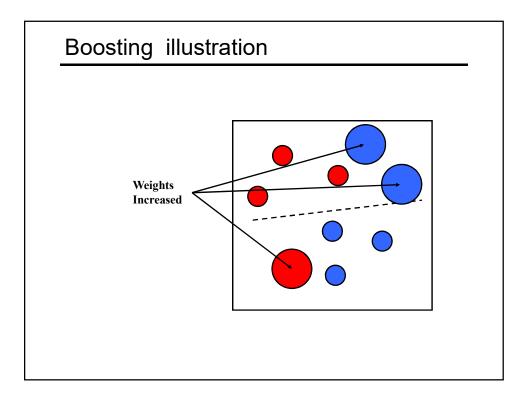
e.g., Dalal & Triggs

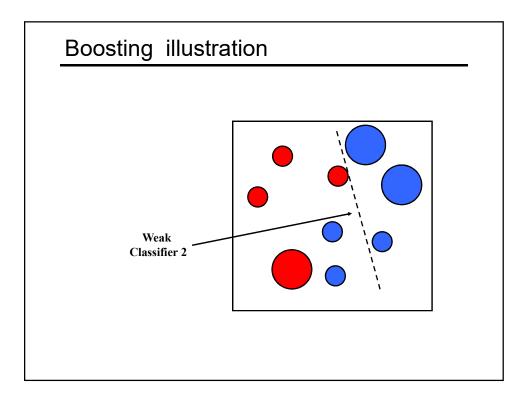
Viola & Jones

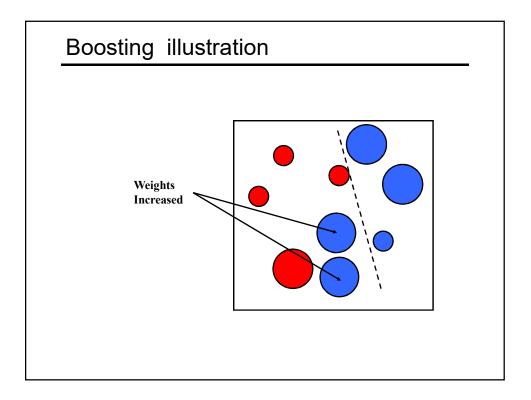
e.g., Hays & Efros

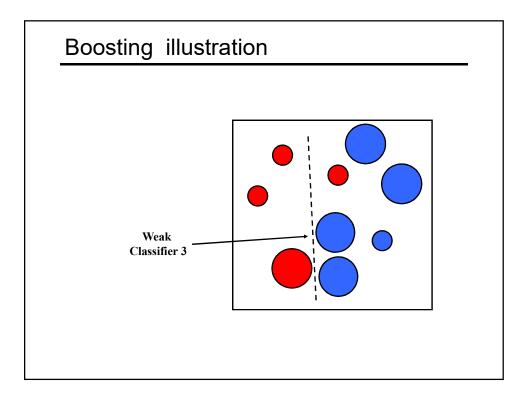


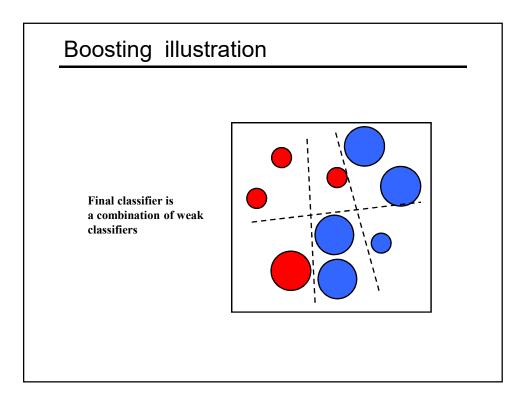










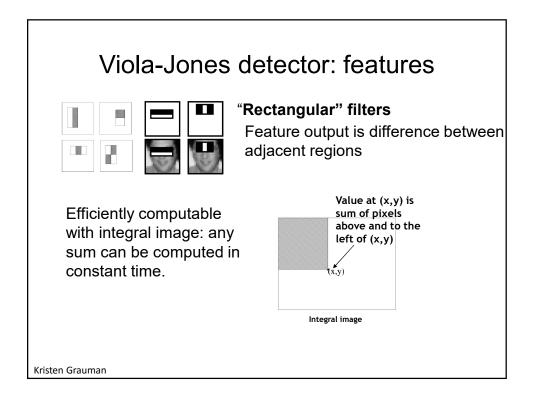


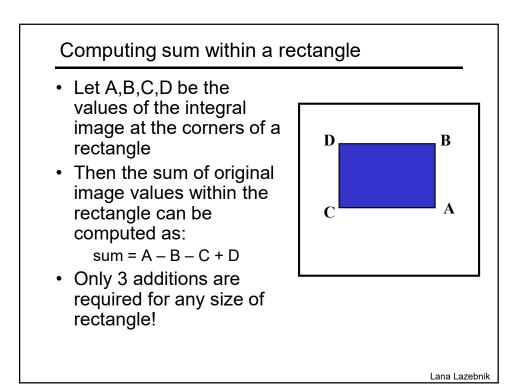
Boosting: training

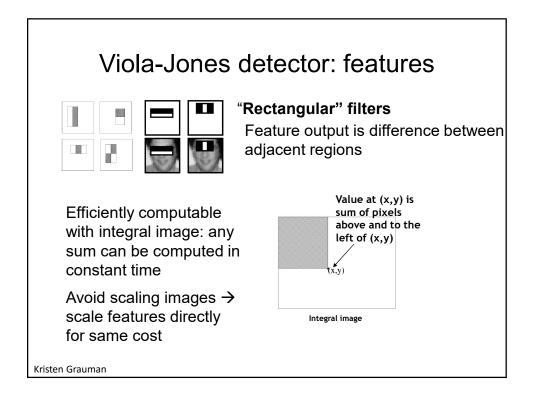
- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest *weighted* training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

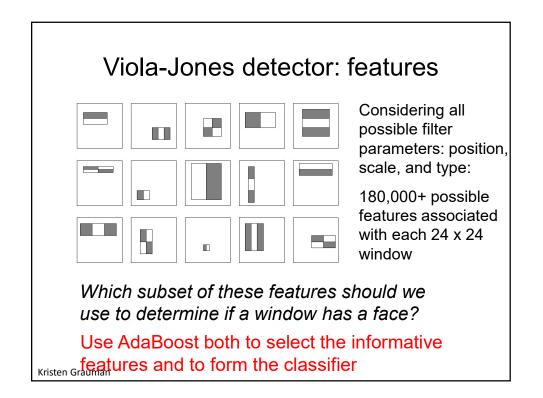
Slide credit: Lana Lazebnik

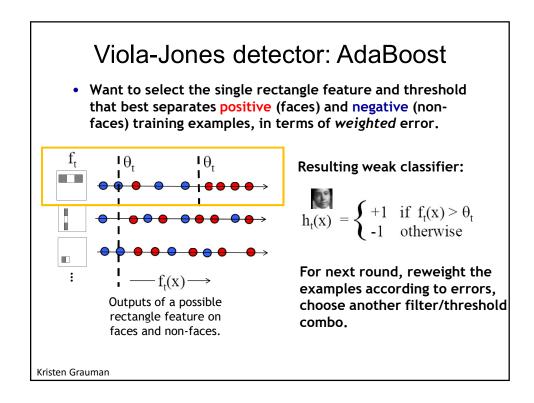
Boosting: pros and cons Advantages of boosting · Integrates classification with feature selection Complexity of training is linear in the number of training examples · Flexibility in the choice of weak learners, boosting scheme · Testing is fast · Easy to implement Disadvantages • · Needs many training examples Often found not to work as well as an alternative discriminative classifier, support vector machine (SVM), or **CNNs** - especially for many-class problems Slide credit: Lana Lazebnik

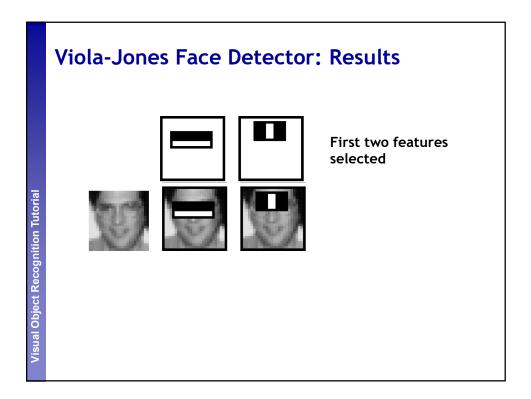


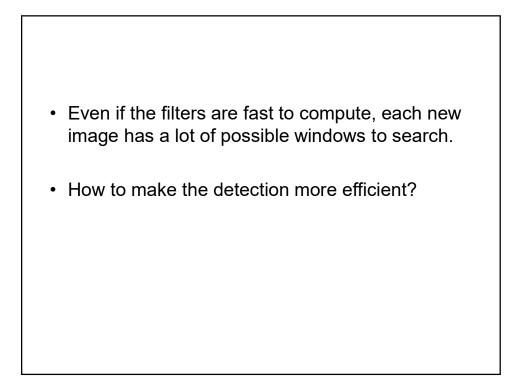


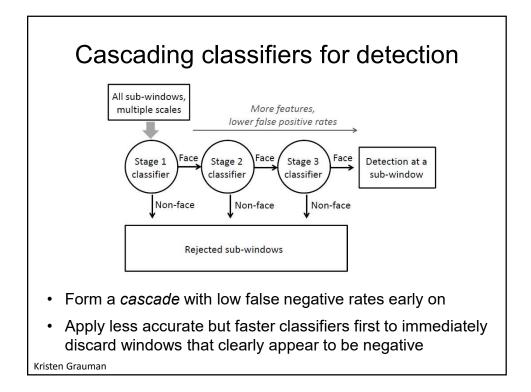


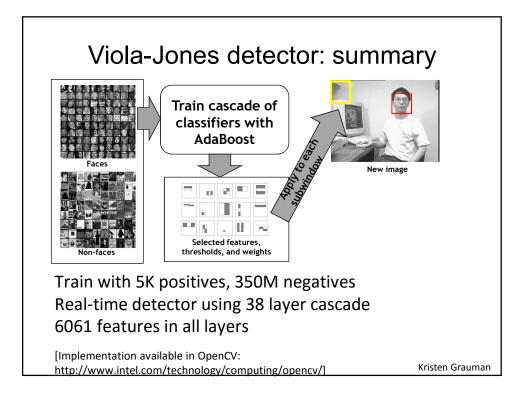


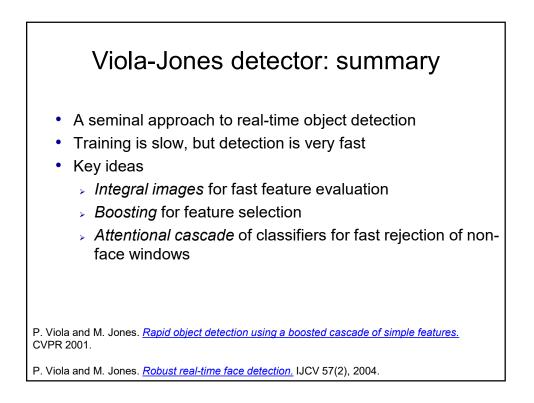


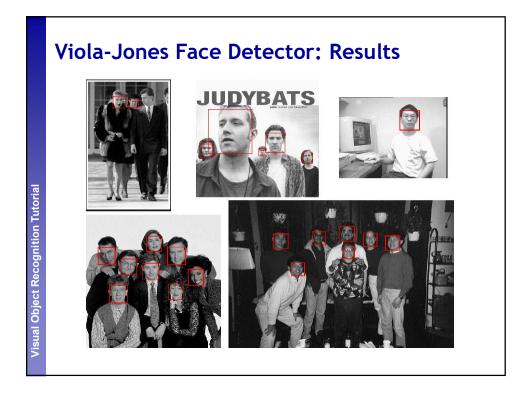


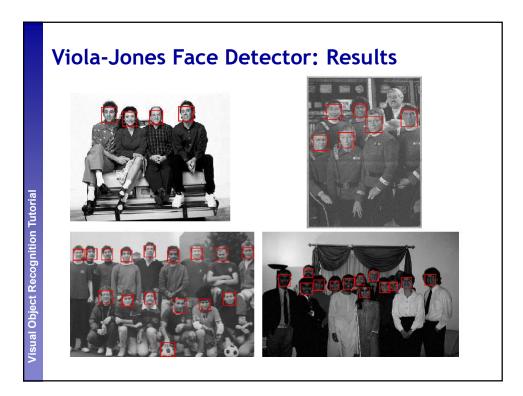


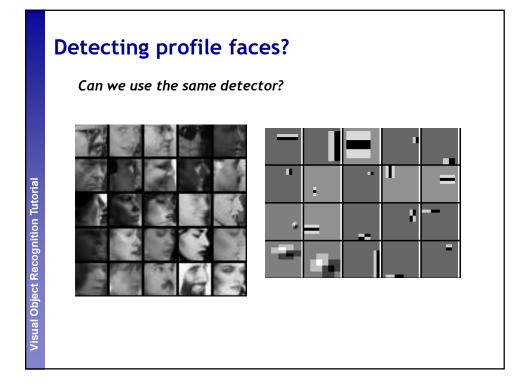


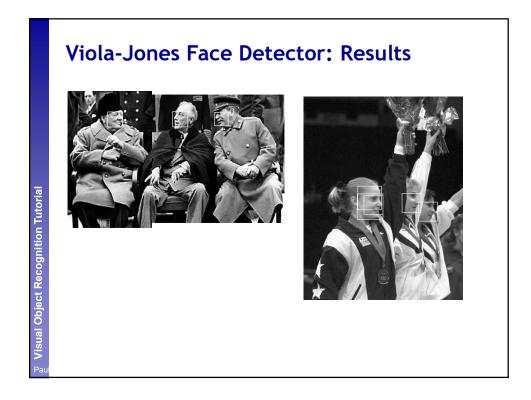


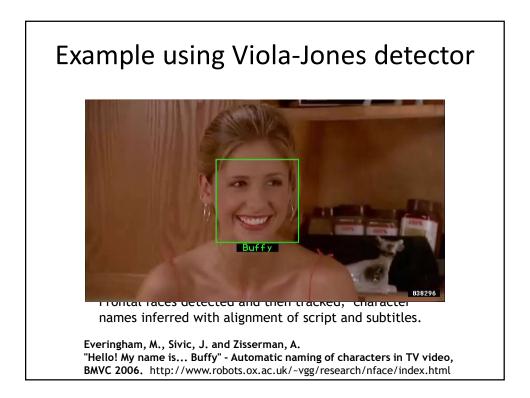


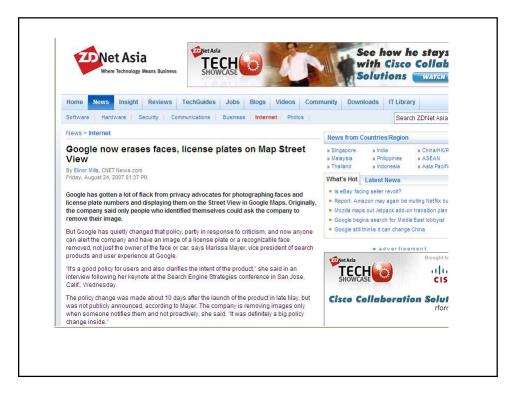






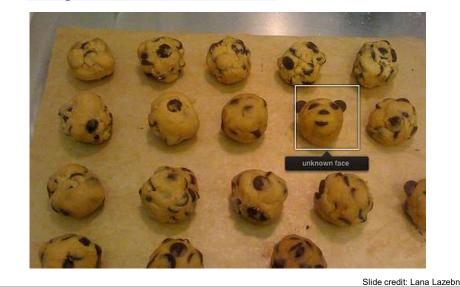




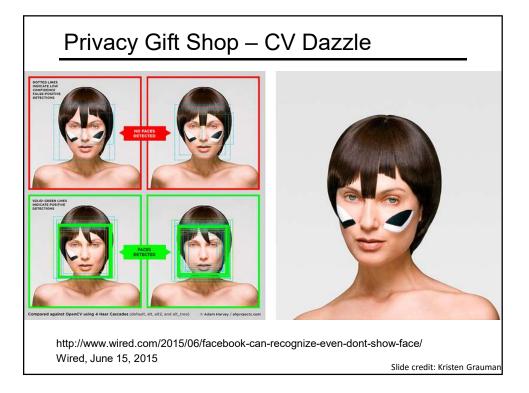


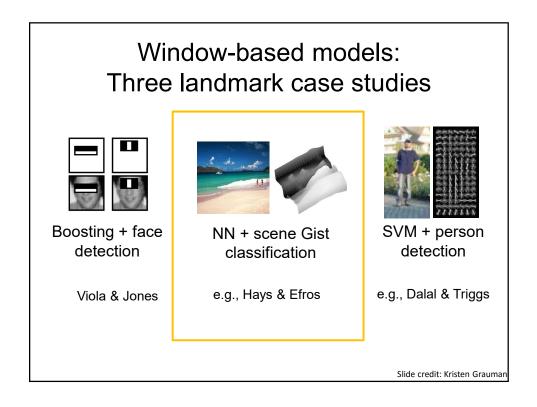
Consumer application: iPhoto

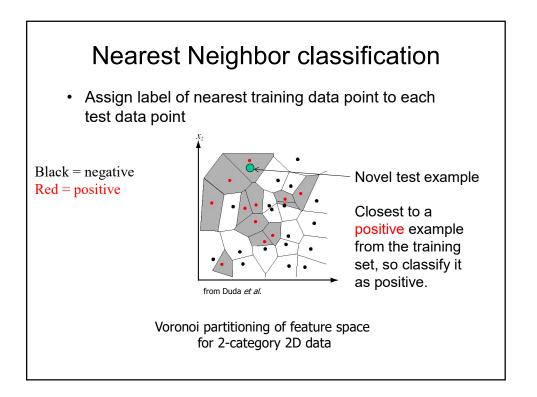
Things iPhoto thinks are faces

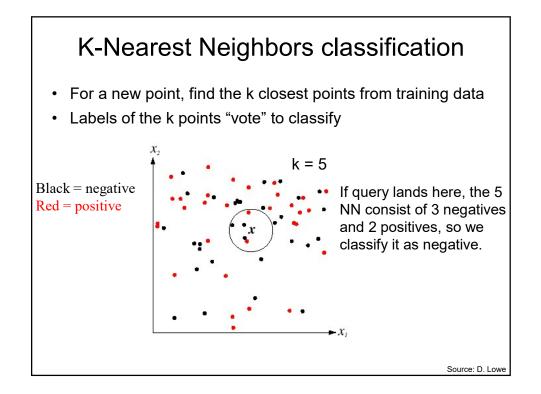


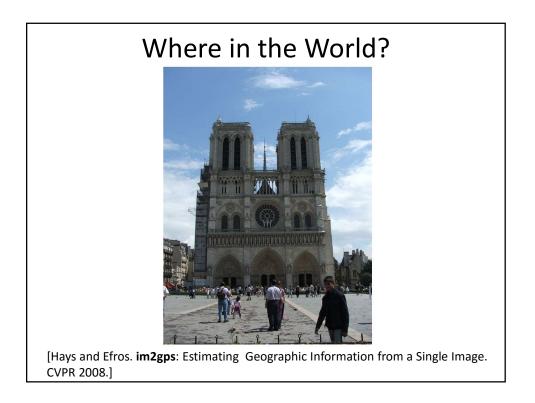


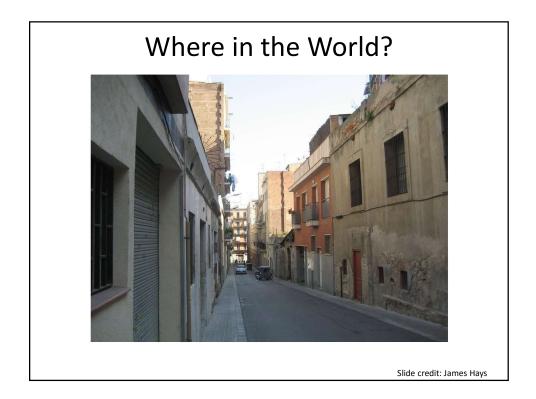




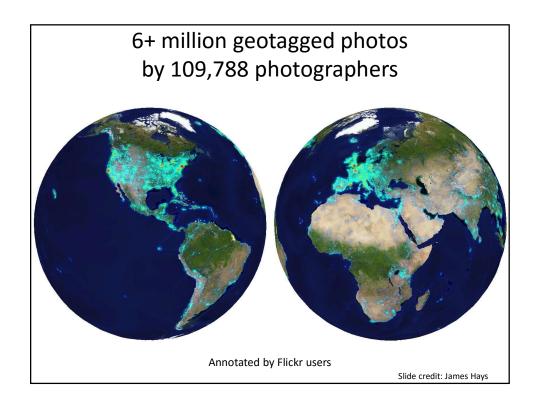


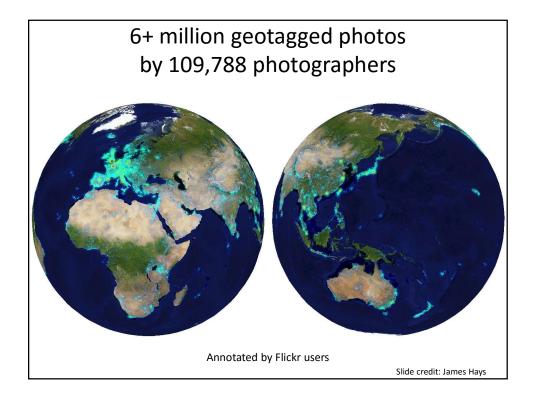


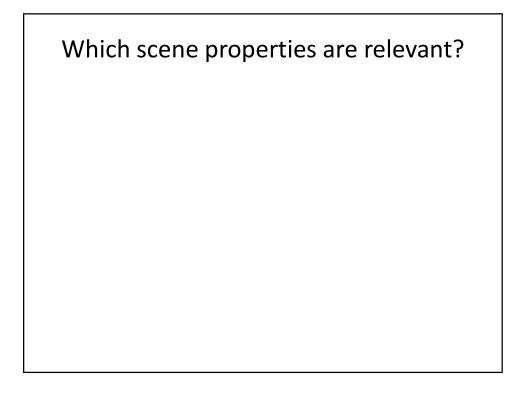


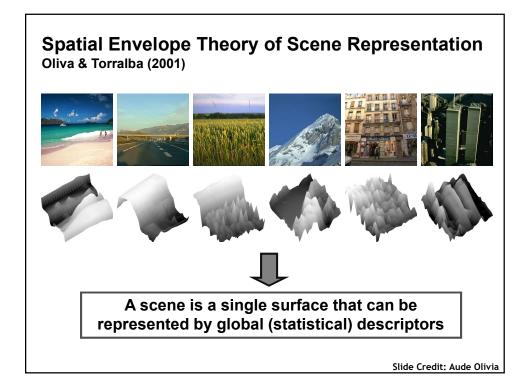


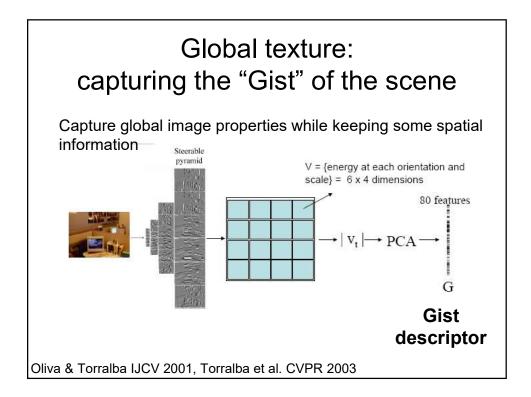


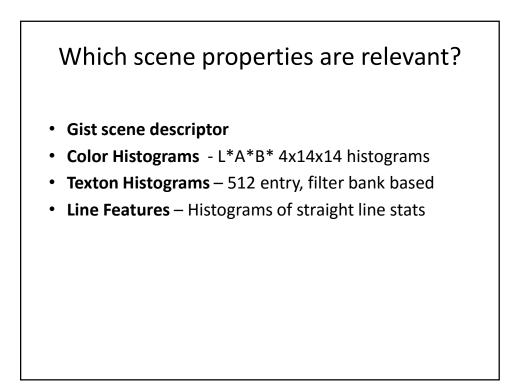


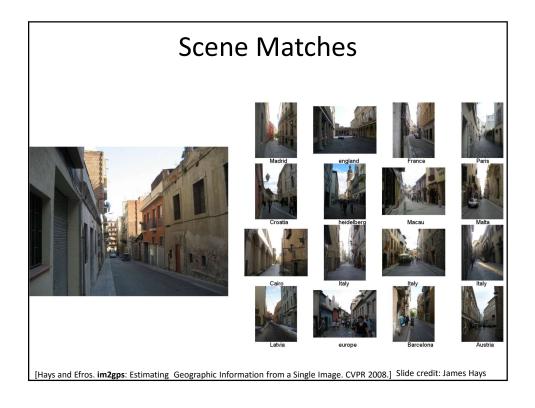


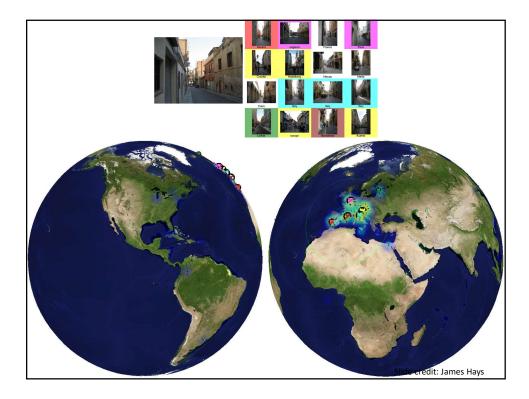




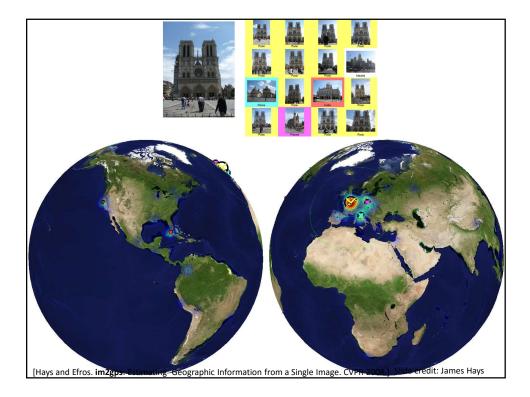


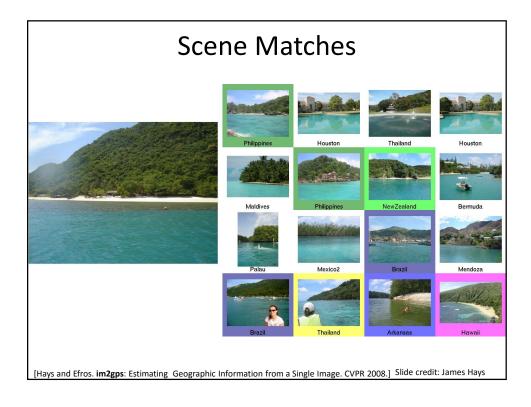


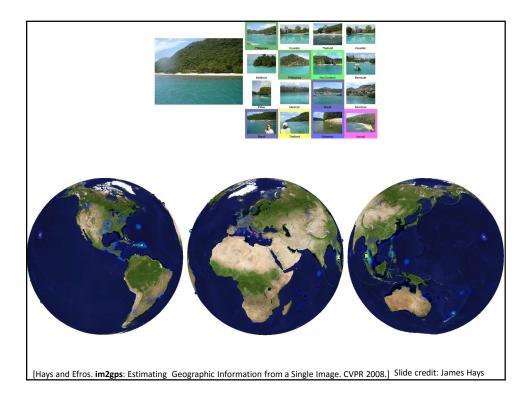


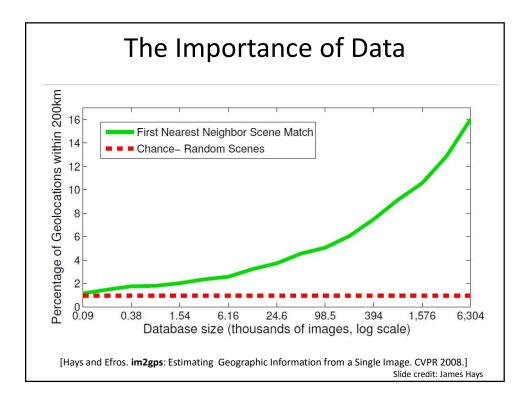


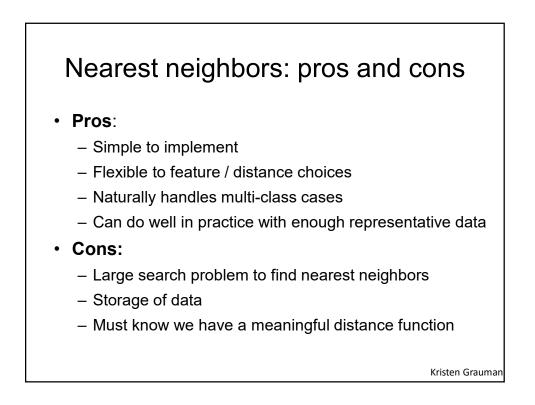






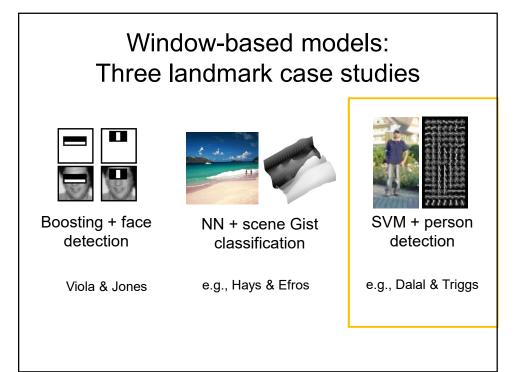


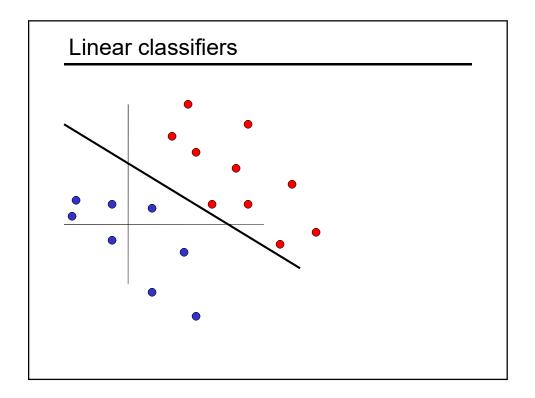


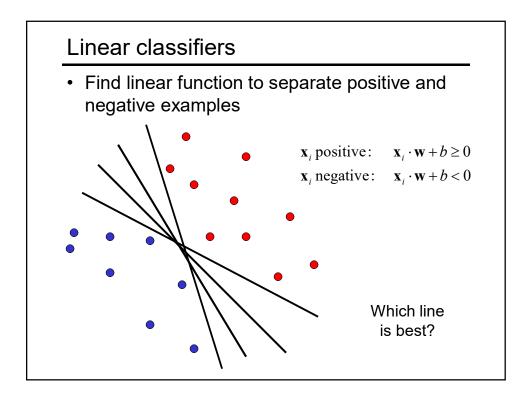


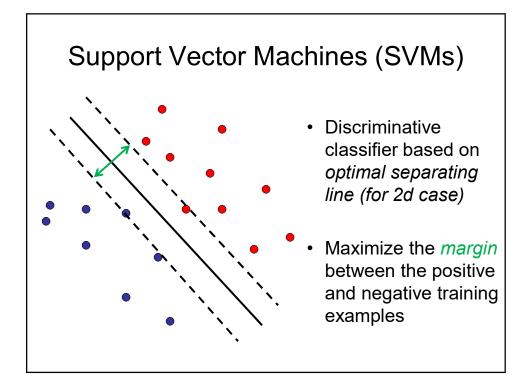
Today

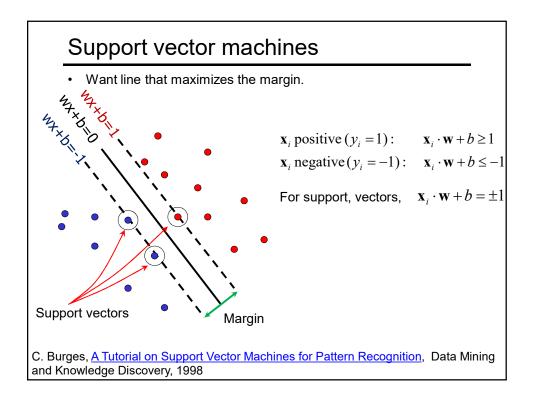
- Intro to categorization problem
- Object categorization as discriminative classification
 - Boosting + fast face detection example
 - Nearest neighbors + scene recognition example
 - Support vector machines + pedestrian detection example
 Pyramid match kernels, spatial pyramid match
 - Convolutional neural networks + ImageNet example
- Some new representations along the way
 - Rectangular filters
 - GIST
 - HOG

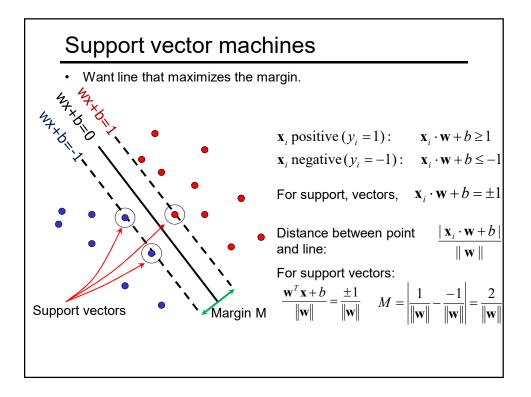


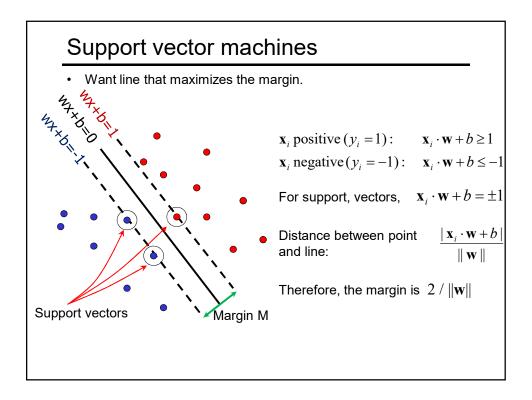












Finding the maximum margin line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

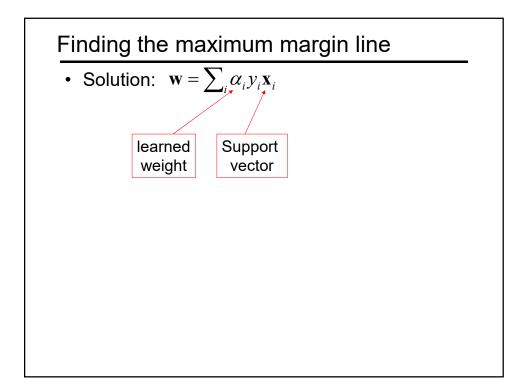
 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

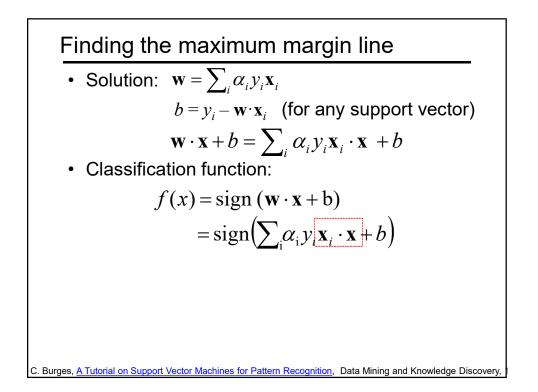
```
\mathbf{x}_i negative (y_i = -1): \mathbf{x}_i \cdot \mathbf{w} + b \le -1
```

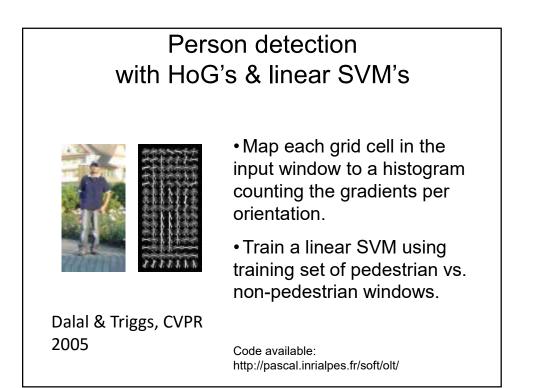
Quadratic optimization problem:

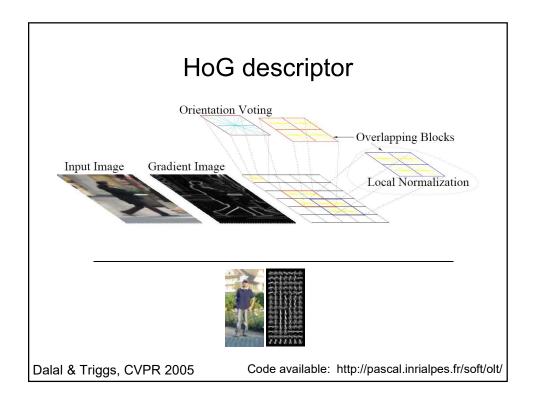
Minimize $\frac{1}{2}\mathbf{w}^T\mathbf{w}$

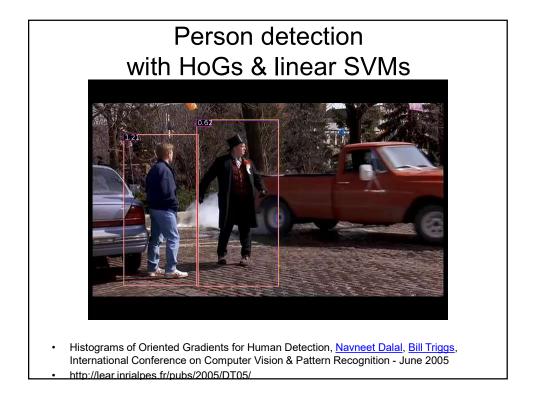
Subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

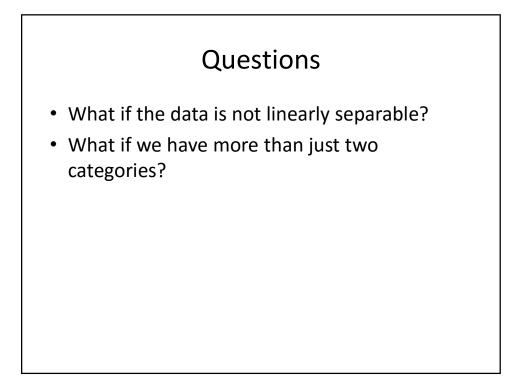


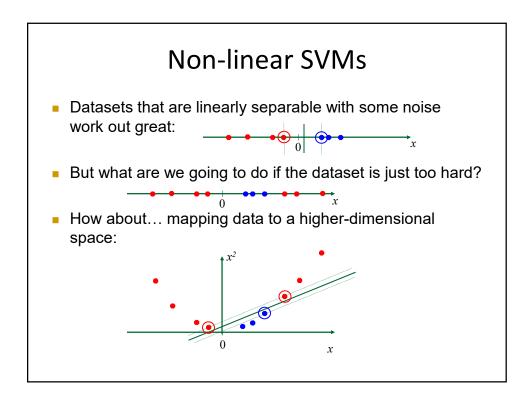












Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

Example

2-dimensional vectors
$$\mathbf{x} = [x_1 \ x_2];$$

let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j):$
 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2,$
 $= 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$
 $= [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^T$
 $[1 \ x_{j1}^2 \ \sqrt{2} \ x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}]$
 $= \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j),$
where $\varphi(\mathbf{x}) = [1 \ x_1^2 \ \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$

Examples of kernel functions

• Linear:
$$K(x_i, x_j) = x_i^T x_j$$

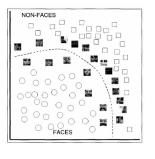
• Gaussian RBF:
$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

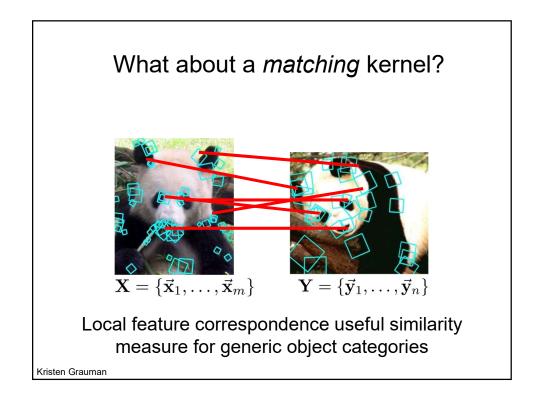
Histogram intersection:

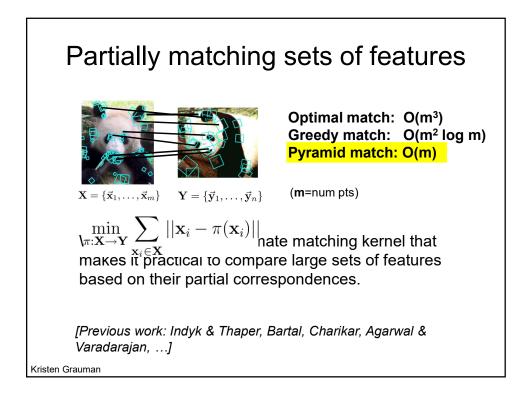
$$K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$$

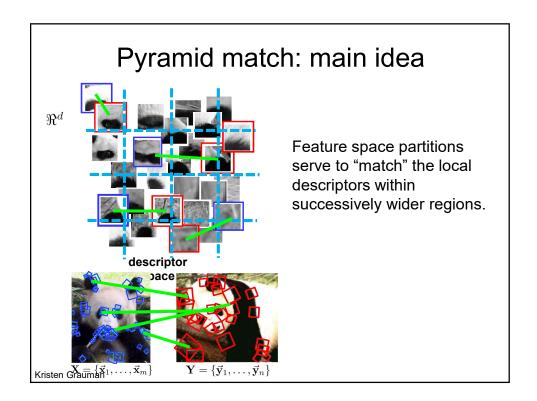
SVMs for recognition

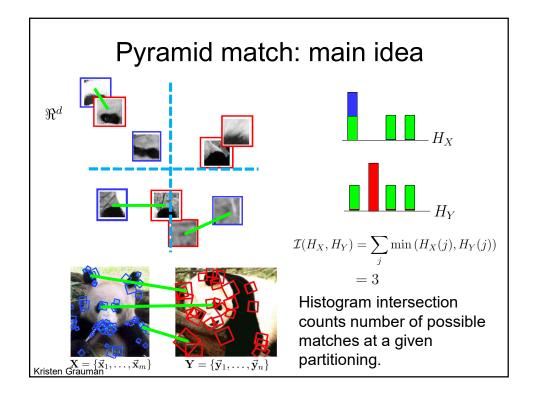
- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Use this "kernel matrix" to solve for SVM support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

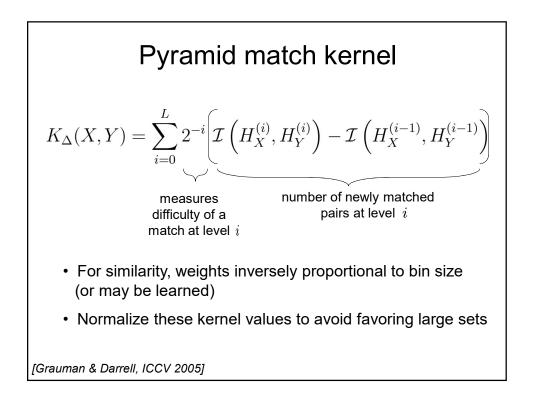


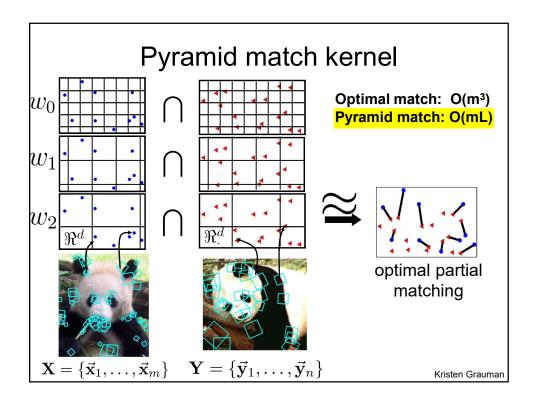


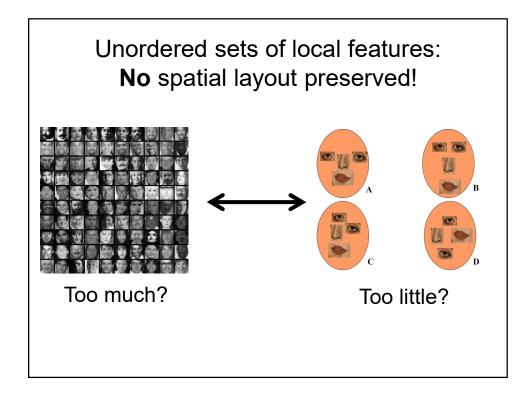


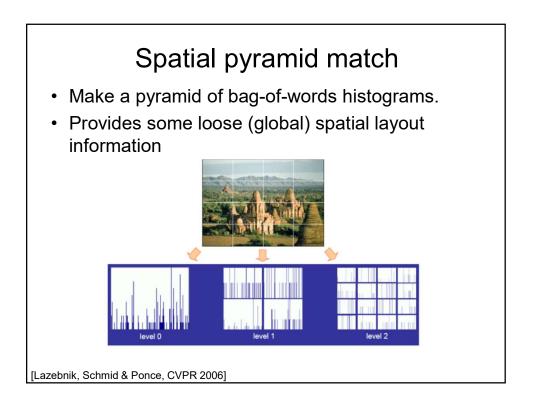


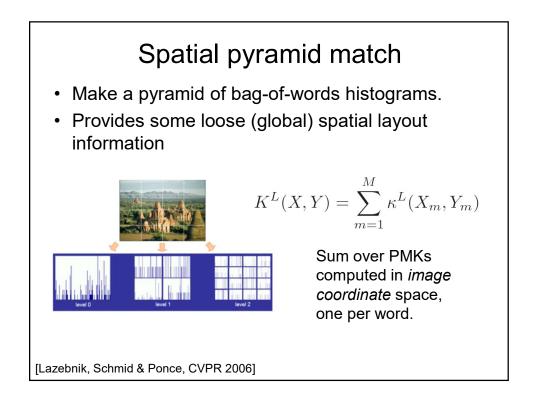


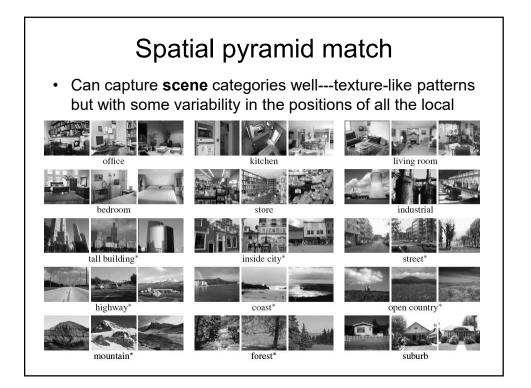


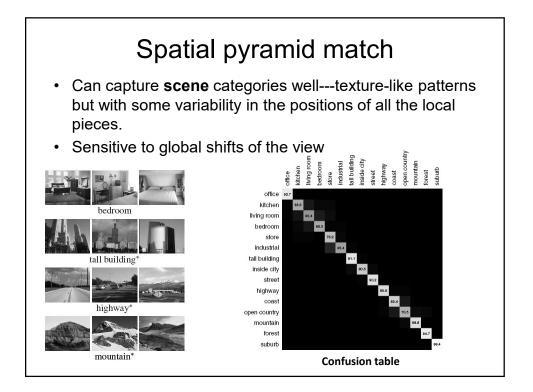


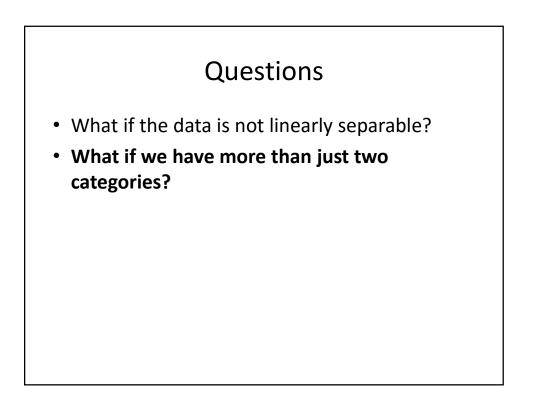












Multi-class SVMs

- Achieve multi-class classifier by combining a number of binary classifiers
- One vs. all
 - Training: learn an SVM for each class vs. the rest
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

Kristen Grauman

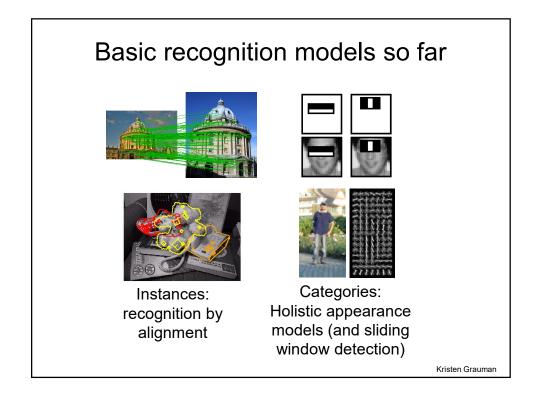
lanted from Lana I

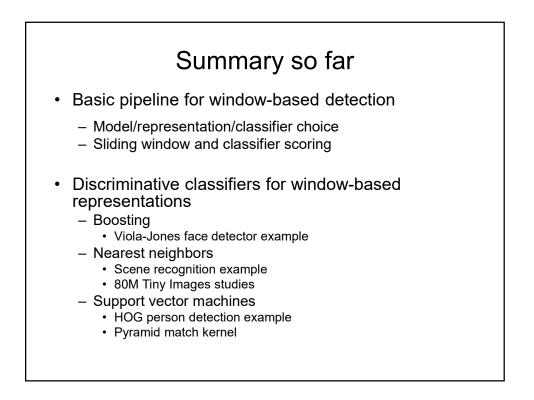
SVMs: Pros and cons

- Pros
 - Kernel-based framework is very powerful, flexible
 - · Often a sparse set of support vectors compact at test time
 - Work very well in practice, <u>even with very small training</u>
 <u>sample sizes</u>

Cons

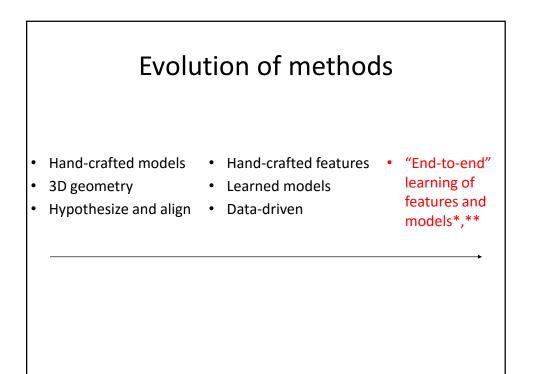
- No "direct" multi-class SVM, must combine two-class SVMs
- Can be tricky to select best kernel function for a problem
- · Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

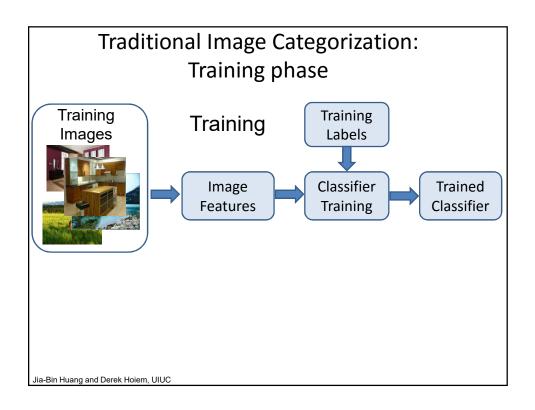


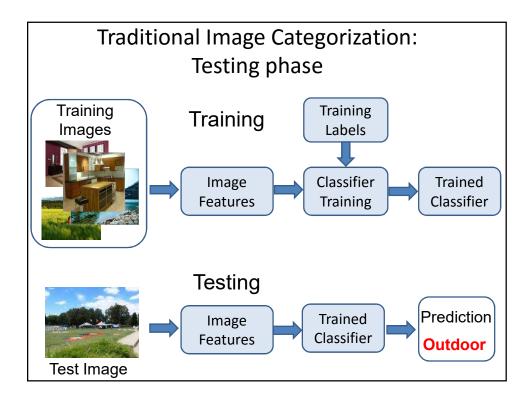


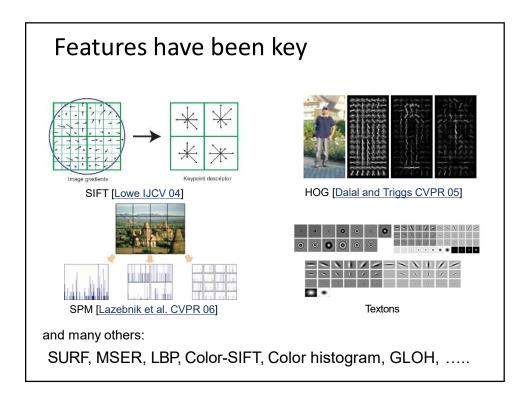
Today

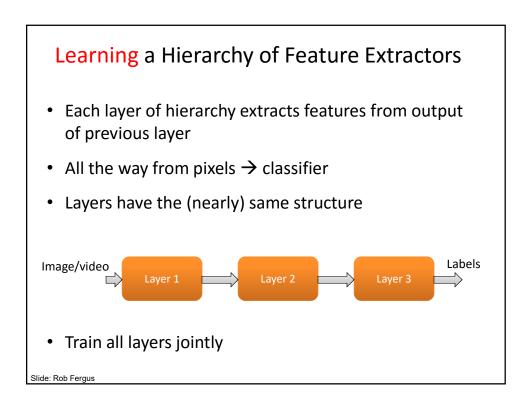
- Intro to categorization problem
- Object categorization as discriminative classification
 - Boosting + fast face detection example
 - Nearest neighbors + scene recognition example
 - Support vector machines + pedestrian detection example
 Pyramid match kernels, spatial pyramid match
 - Convolutional neural networks + ImageNet example
- Some new representations along the way
 - Rectangular filters
 - GIST
 - HOG

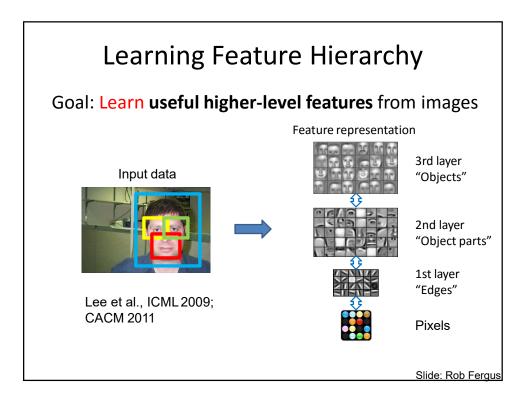


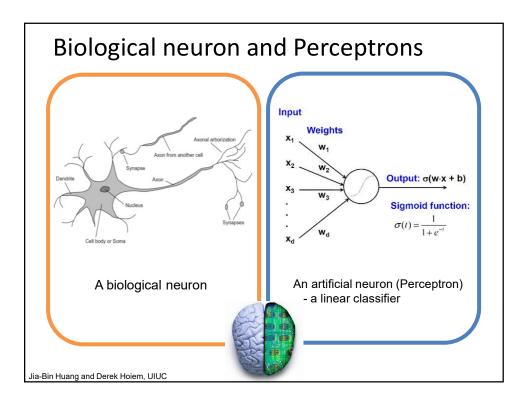


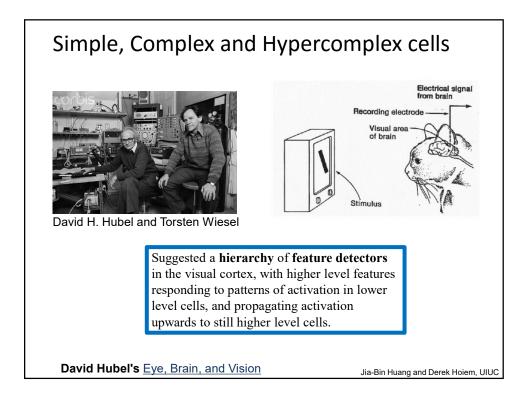


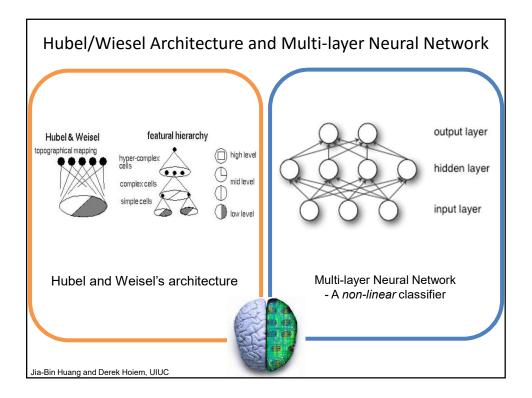


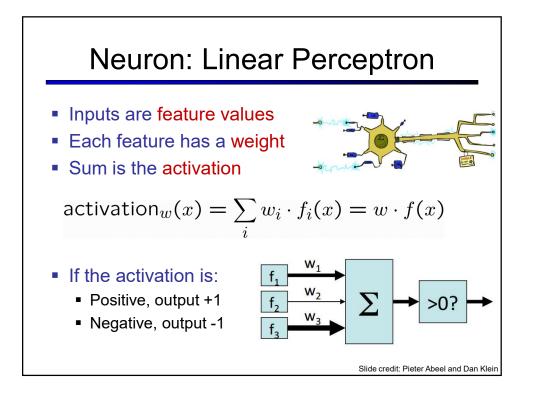


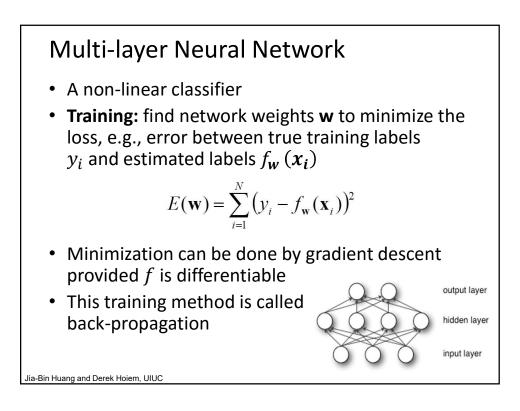


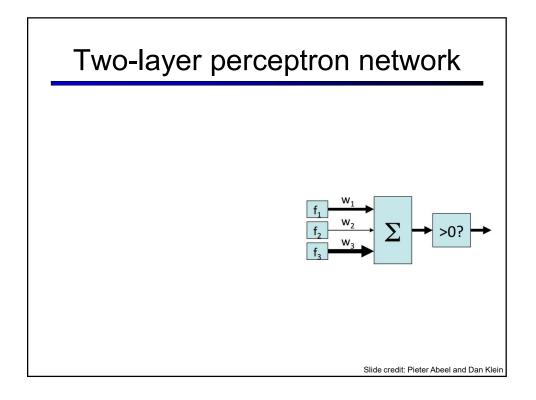


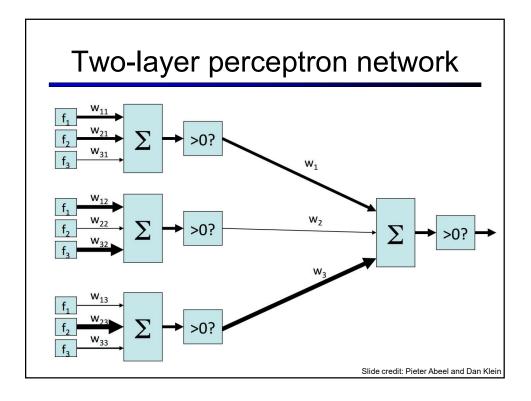


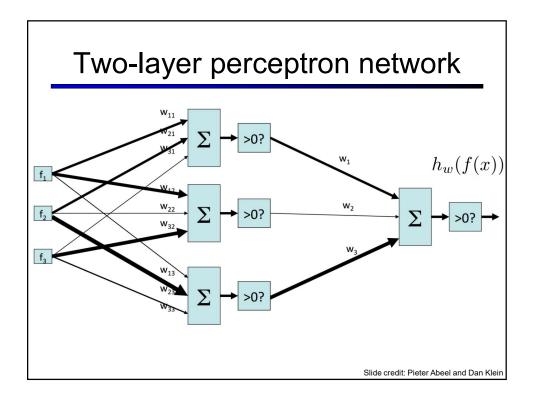


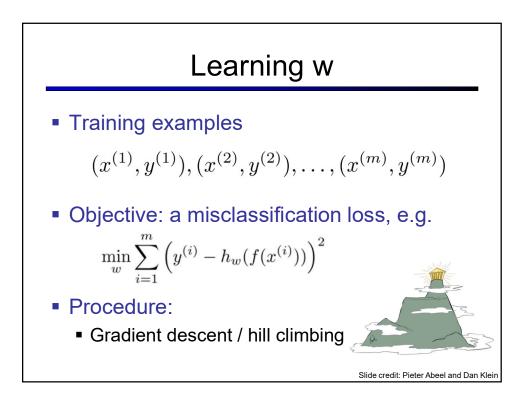


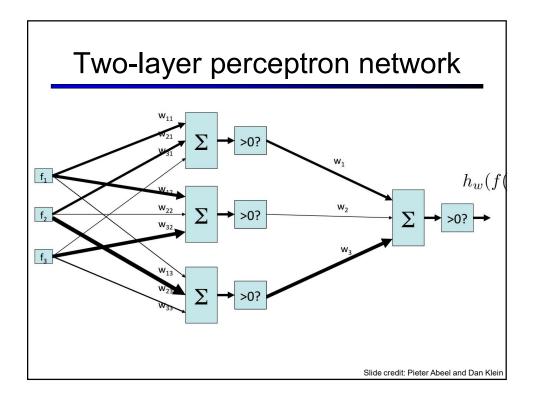




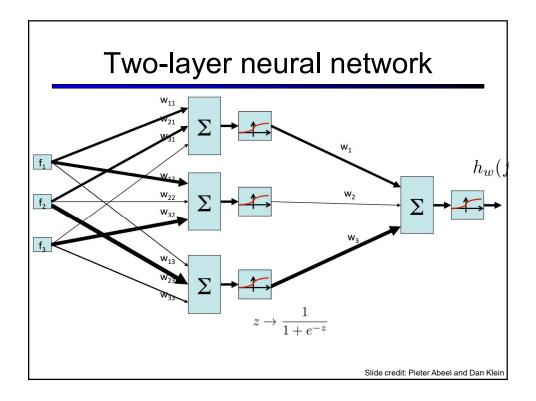


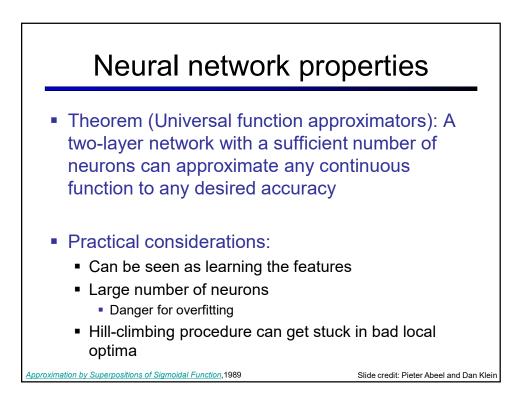


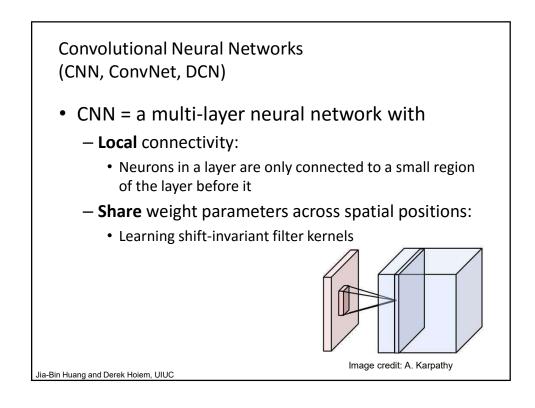


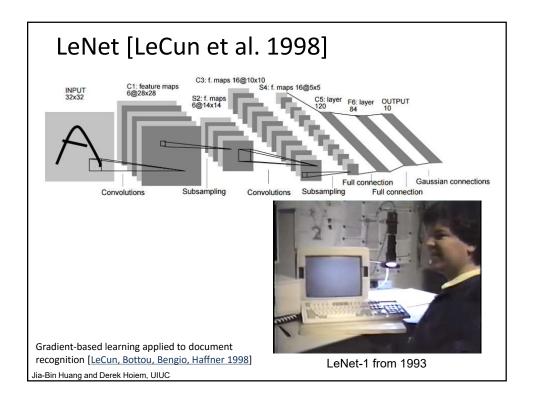


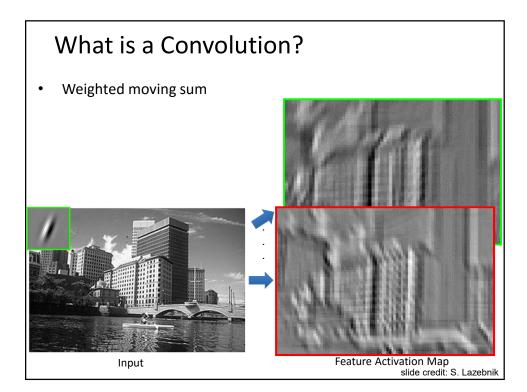


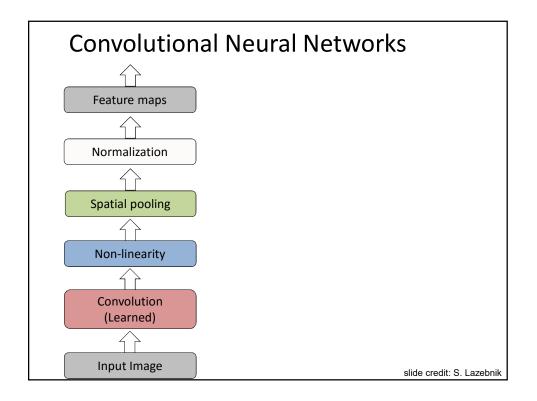


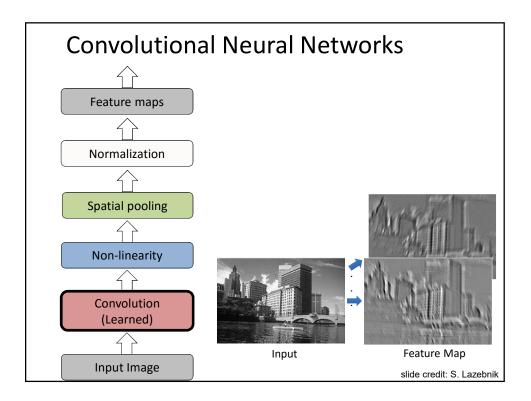


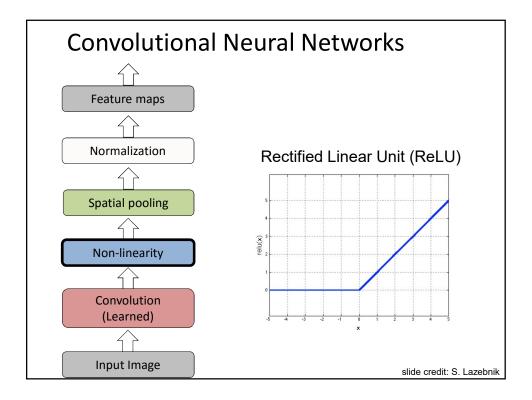


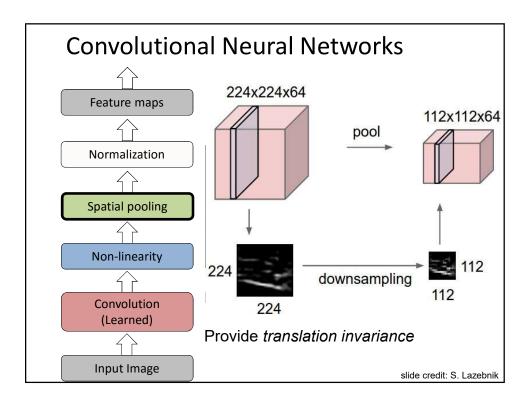


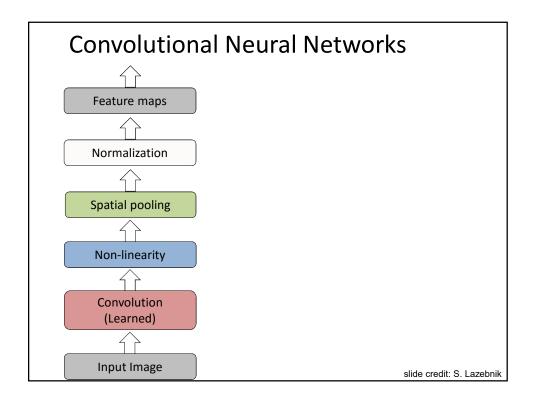


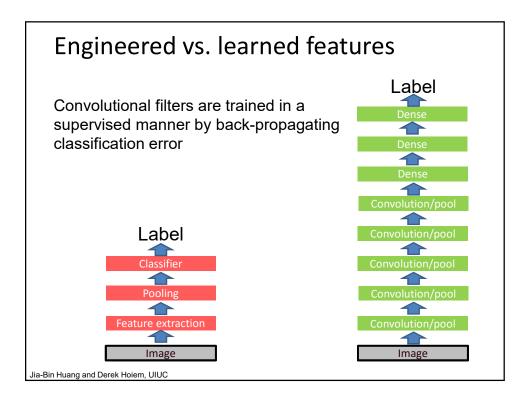


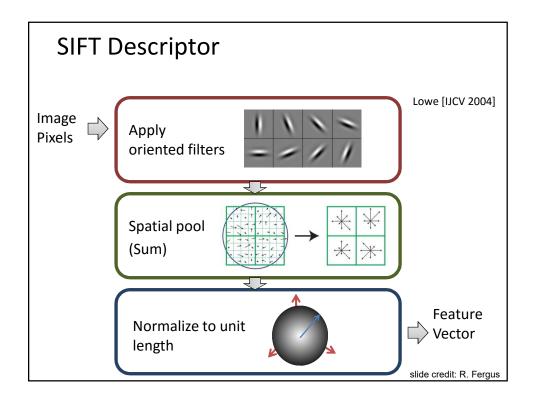


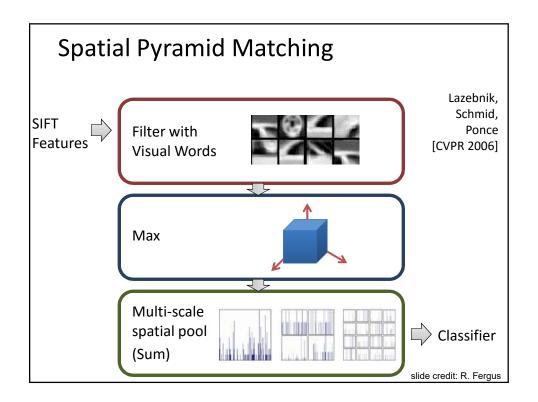




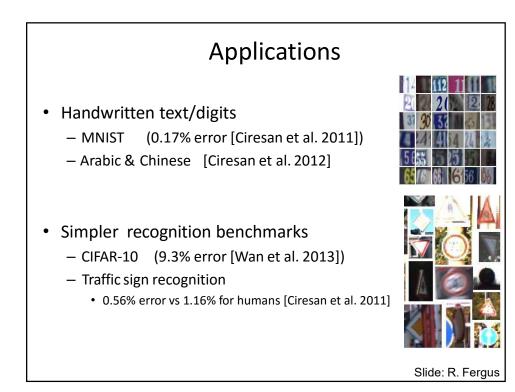


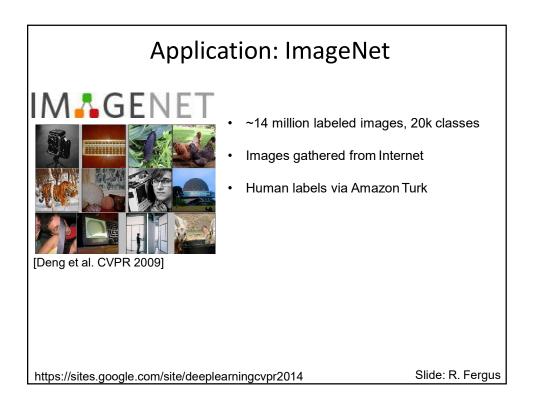


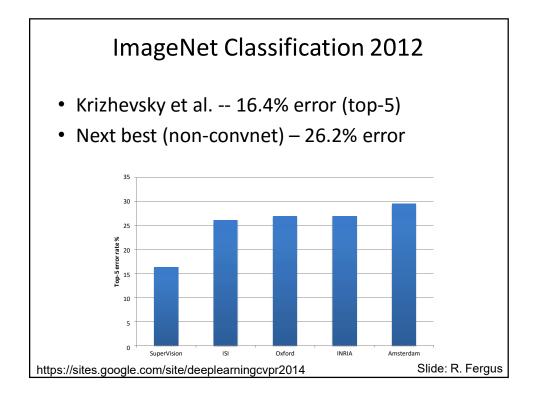


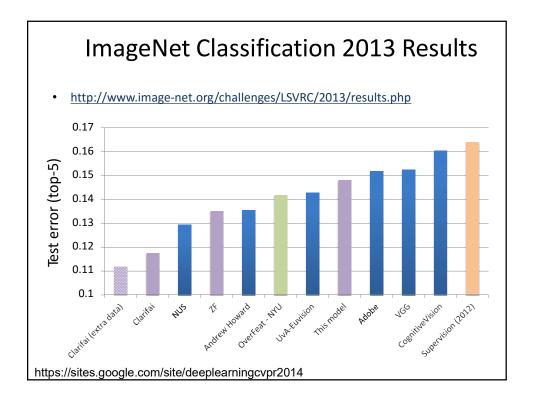




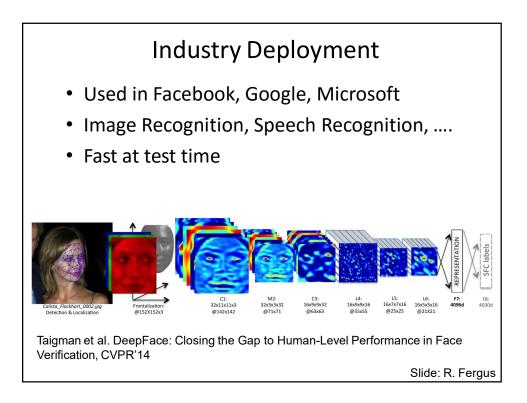








Team	Year	Place	Error (top-5)	n-convnet in 2012: 2
SuperVision – Toronto (7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16 layers)	2014	2nd	7.32%	no
GoogLeNet (19 layers)	2014	1st	6.67%	no
Human expert*			5.1%	

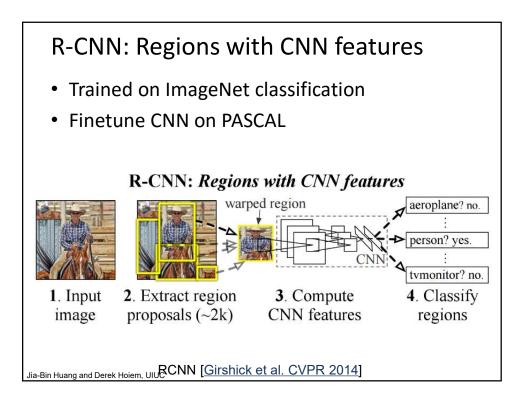


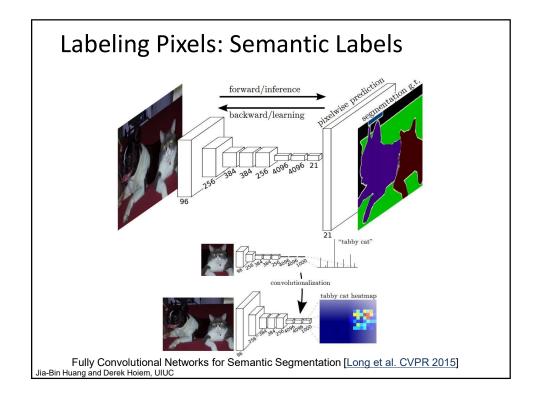
Beyond classification

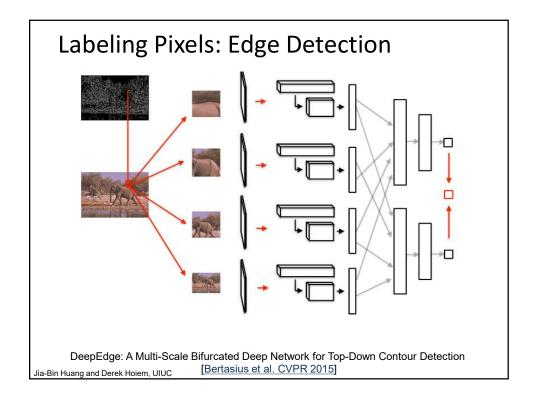
- Detection
- Segmentation
- Regression
- Pose estimation
- Matching patches
- Synthesis

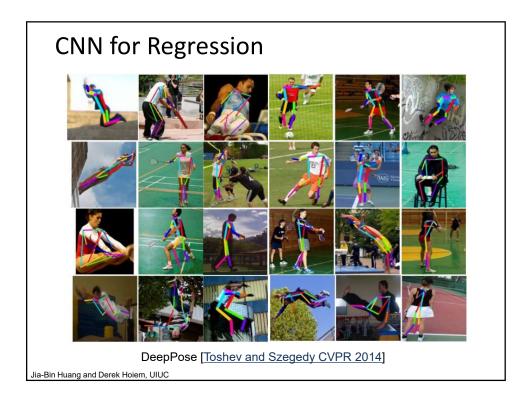
and many more...

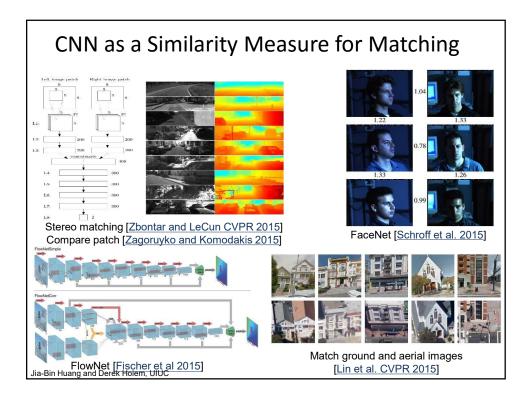
Jia-Bin Huang and Derek Hoiem, UIUC

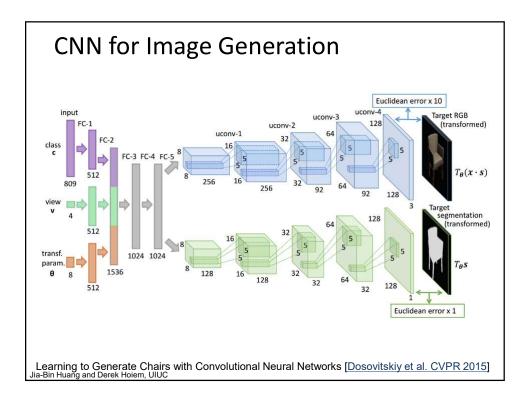














Recap

- Neural networks / multi-layer perceptrons
 - View of neural networks as learning hierarchy of features
- Convolutional neural networks
 - Architecture of network accounts for image structure
 - "End-to-end" recognition from pixels
 - Together with big (labeled) data and lots of computation → major success on benchmarks, image classification and beyond

Announcements

- Reminder: Assignment 1 due Sept 16 11:59 pm on Canvas
- Reminder: Optional CNN/Caffe tutorial on Monday Sept 12, 5-7 pm (here)