# Force from Motion: Decoding Physical Sensation in a First Person Video

Presenter: Jimmy Xin Lin Prof. Kristen Grauman Department of Computer Science University of Texas at Austin

#### Outline

#### Introduction

- ► Target Problem, Essential Concepts, Motivations
- A Visual Demo
- ► Challenges, Related Work
- ▶ Framework: Force From Motion
  - Gravity Direction
  - > Physical Scale: Speed and Terrain
  - Active Force and Torque
- Experimentation
  - Quantitative Evaluation
  - Qualitative Evaluation
- Conclusion and Discussion



#### Introduction

Target Problem, Essential Concepts, Motivations



#### Introduction I: First Conceptual Touch

- Target problem: Model camera carrier's physical sensation over the videos at his/her first-person perspective.
- This paper initiate a computational framework to evaluate the ego-motion from an egocentric video with the domain knowledge of physical body dynamics.
- What is the physical sensation?
  - ► Conceptually, analytic components of one's physical motion.
  - > Mechanically, three ingredients: gravity, physical scale, and active force and Torque.

#### Introduction II: A Visual Demo

![](_page_4_Figure_1.jpeg)

#### Introduction III: More on Techniques

- Technical Challenges
  - ► Limited observations of one's body parts (body pose is not visible from the camera).
  - Scale and orientation are ambiguous from the motion.
  - Scene and activity vary case by case (environmental appearance, camera placement, and motion pattern).
- Applications:
  - computational sport analytics (mountain biking, urban bike racing, skiing and etc.).
  - activity recognition, video indexing, and content generation for virtual reality.

#### **Force From Motion**

Gravity, scale, and active force and torque are three key ingredients that evaluates the physical sensation of one's motion.

#### Force from Motion I: Gravity Direction

- Intuition: image cues (i.e. trees and buildings) imply the gravity direction.
- Approach: construct a convolutional neural network [16] to predict a gravity direction in a 2D image. This per image prediction is **integrated over multiple** frames  $\{\mathcal{I}_i\}_{i=1}^{F}$  by leveraging structure from motion.
- Define a 3D unit gravity direction

$$\hat{\mathbf{g}}(\theta, \phi) = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \end{bmatrix}^{\mathsf{T}} \in \mathbb{S}^2$$

Compute maximum a posteriori (MAP) estimate the gravity direction given a set of images  $\{\mathcal{I}_i\}_{i=1}^F$   $\hat{\mathbf{g}}^* = \underset{\hat{\mathbf{g}} \in \mathbb{S}^2}{\operatorname{argmax}} p(\hat{\mathbf{g}} | \mathcal{I}_1, \cdots, \mathcal{I}_F)$ 

$$= \underset{\hat{\mathbf{g}} \in \mathbb{S}^2}{\operatorname{argmax}} p(\hat{\mathbf{g}}) \prod_{i=1}^F p(\mathcal{I}_i | \hat{\mathbf{g}}),$$

$$p(\hat{\mathbf{g}}) = \sum_{k=1}^{k} \frac{\kappa_k}{4\pi \sinh \kappa_k} \exp\left(\kappa_k \hat{\mathbf{g}}^\mathsf{T} \hat{\mathbf{m}}_k\right)$$

### Gravity Direction (cont.)

- Image likelihood  $p(\mathcal{I}_i|\hat{\mathbf{g}})$  measures how well the aligned 3D gravity direction is consistent with cues on the i-th image.
- Learn the image likelihood function using the convolutional neural network (CNN) proposed by Krizhevsky et al. [16] with a few minor modifications.
  - ▶ Resizing: warped images (1280 × 720) are resized to 320 × 180 as inputs for the CNN
  - ► Target Shrinking: train the network to predict a probability of the projected angle discretized by 1 degree between -30 and 30 degrees.

![](_page_8_Picture_5.jpeg)

 Predictions on multiple frames are consolidated to predict the 3D gravity direction by the reconstructed 3D camera orientations.

#### Force from Motion II: Physical Scale

- Two yielded torques must be balanced to maintain the leaning angle  $\theta_{b}$ :
  - $\blacktriangleright$  The normal force,  $F_{
    m N}$ , produces a torque,  $T_{
    m N} \,=\, l F_{
    m N} \cos heta_{
    m b}$  .
  - $\blacktriangleright$  the friction force  $F_{
    m L}$  produces an opposite directional torque  $T_{
    m L}=lF_{
    m L}$
- ▶ By equating  $T_{\rm L} + \overline{T_{\rm N}} = 0$ , we got  $\|\mathbf{g}\| = 9.81 \,\mathrm{m/s^2} = c \frac{|\hat{\mathbf{a}}_{\rm x}|}{\tan \theta_{\rm b}}$ ,

 $\hat{\mathbf{a}}_{\mathbf{x}}$  is the linear acceleration in the lateral direction, which is measured from the reconstructed 3D camera trajectory, c is a scale factor that maps from the 3D reconstruction to the physical world.

![](_page_9_Figure_6.jpeg)

#### Force from Motion III: Active Forces and Torque

A single rigid body that undergoes motion as a resultant of forces and torque can written as  $m\mathbf{a} = \mathbf{F}_{\mathrm{in}} + \mathbf{F}_{\mathrm{ex}}$ 

$$\mathcal{J}oldsymbol{lpha} + oldsymbol{\omega} imes \mathcal{J}oldsymbol{\omega} = \mathbf{T}_{\mathrm{in}} + \mathbf{T}_{\mathrm{ex}}$$

![](_page_10_Picture_3.jpeg)

(c) Geometry

 $\widetilde{T_{\rm y}}$ 

Represent the first formula in world coordinate system {W} and the second in the body coordinate system {B}.

The active force and torque are composed of thrust force  $F_{\rm T}$ , roll torque  $T_{\rm R}$  and yaw (steering) torque  $T_{\rm Y}$ 

$$\mathbf{F}_{ ext{in}} = F_{ ext{T}} rac{\mathbf{v}}{\|\mathbf{v}\|}, \qquad \mathbf{T}_{ ext{in}} = \left[egin{array}{cc} 0 & T_{ ext{Y}} & T_{ ext{R}} \end{array}
ight]^{ ext{T}},$$

> The passive force and torque are composed of the following components

$$\mathbf{F}_{\mathrm{ex}} = m\mathbf{g} + (F_{\mathrm{D}} + F_{\mathrm{F}}) \frac{\mathbf{v}}{\|\mathbf{v}\|} + \begin{bmatrix} F_{\mathrm{L}} & F_{\mathrm{N}} & 0 \end{bmatrix}^{\mathsf{T}}$$
$$\mathbf{T}_{\mathrm{ex}} = \begin{bmatrix} 0 & 0 & lF_{\mathrm{N}} \sin \theta_{\mathrm{b}} - lF_{\mathrm{L}} \cos \theta_{\mathrm{b}} \end{bmatrix}^{\mathsf{T}},$$

#### Active Forces and Torque (cont.)

Compact form of motion description:

$$\mathcal{M}\ddot{\mathbf{q}} + \mathcal{C}(\dot{\mathbf{q}}) = \mathbf{J}\mathbf{u} + \mathbf{E},$$

Where

- $\blacktriangleright$   $\mathcal{M}$  is the inertial matrix,  $\mathcal{C}$  is the Coriolis matrix.
- **E** is the passive force and torque, and  $\mathbf{u} = \begin{bmatrix} F_{\mathrm{T}} & T_{\mathrm{R}} & T_{\mathrm{Y}} \end{bmatrix}$  is the active component.
- ► The state  $\mathbf{q} = \begin{bmatrix} \mathbf{C}^{\mathsf{T}} & \mathbf{\Omega}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$  describes the camera ego-motion where  $\mathbf{C} \in \mathbb{R}^3$  is the camera center and  $\mathbf{\Omega} \in \mathbb{R}^3$  is the axis-angle representation of camera rotation.
- J is a workspace mapping matrix written as:

$$\mathbf{J} = \begin{bmatrix} \mathbf{v}^{\mathsf{T}} / \| \mathbf{v} \| & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 \\ \mathbf{0} & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

For this describes motion in terms of active force and torque component,  ${f u}$ , which allows us to directly map between input and the resulting motion.

#### **Optimal Control: Inverse Dynamics**

Integration of three ingredients for physical sensation (gravity direction, physical scale, and active force and torque) into the following optimization problem:

$$\begin{array}{ll} \underset{\mathbf{u}(t),\{\mathbf{X}_j\}}{\text{minimize}} & \sum_{i,j} \mathcal{D}\left(\mathbf{P}(t_i)\mathbf{X}_j,\mathbf{x}_{ij}\right) + \lambda_{\mathcal{R}} \int_0^T \dot{\mathbf{u}}(t)^{\mathsf{T}} \dot{\mathbf{u}}(t) \mathrm{d}t \\ \text{subject to} & \mathbf{P}(t_i) = \mathbf{K}\mathbf{R}(t_i) \begin{bmatrix} \mathbf{I}_3 & -\mathbf{C}(t_i) \end{bmatrix} \end{aligned}$$

$$\mathcal{M}\ddot{\mathbf{q}} + \mathcal{C}(\dot{\mathbf{q}}) = \mathbf{J}\mathbf{u} + \mathbf{E},$$

- Notations:
  - $\blacktriangleright$   $\mathcal{D}$  measures reprojection error
  - $\blacktriangleright$  the camera projection matrix at  $t_i$  time instant
  - ▶  $\mathbf{X} \in \mathbb{P}^3$  is a 3D point, and  $\mathbf{x}_{ij} \in \mathbb{P}^2$  is the j-th 2D point measurement at  $t_i$  time instant.
- The goal is to infer the unknown 3D world structure X, and active component  $\mathbf{u}(t)$  for the rigid body dynamics.
- Last term in the cost function regularizes active forces such that the resulting input profile over time is continuous.
- ▶ The above objective function can be solved using Levenberg-Marquardt algorithm [22].

## Experimentation

![](_page_13_Picture_1.jpeg)

#### **Quantitative Evaluation**

- Experimental setup:
  - ▶ Two Inertial Measurement Unit (IMU): one on head and the other on body.
  - > Two Cameras: One on head and the other some place to monitor behaviors.

- Training Set: 29 Biking Sequences (10 secs with 300 frames).
- Operate quantitative evaluations in three criteria:
  - Gravity Prediction
  - Scale Recovery
  - Active Force and Torque Estimation

![](_page_14_Picture_9.jpeg)

#### **Gravity Prediction**

- Compare our predictions using CNN and reconstructed camera orientation with three baseline methods:
  - > a) Y axis: prediction by the image Y axis as a camera is often oriented upright
  - **b**) Y axis MLE: prediction by a) consolidated by the reconstructed camera orientation
  - c) ground plane normal. The ground plane is estimated by fitting a plane with RANSAC on the sparse point cloud.
- Test our method on manually annotated data

|                 | Bike 1 |      |      | Bike 2 |       |       | Bike 3  |      |       | Bike IMU |       |       |
|-----------------|--------|------|------|--------|-------|-------|---------|------|-------|----------|-------|-------|
|                 | Mean   | Med. | Std. | Mean   | Med.  | Std.  | Mean    | Med. | Std.  | Mean     | Med.  | Std.  |
| Y axis          | 5.62   | 4.44 | 4.72 | 8.10   | 6.18  | 9.06  | 10.15   | 9.29 | 6.34  | 16.02    | 13.11 | 10.88 |
| Y axis MLE      | 5.92   | 4.57 | 4.66 | 6.08   | 5.31  | 5.91  | 10.68   | 8.97 | 9.11  | 15.83    | 12.28 | 11.21 |
| Ground plane    | 7.45   | 6.28 | 5.14 | 12.69  | 10.20 | 8.99  | 11.31   | 8.16 | 11.01 | 11.98    | 10.24 | 9.03  |
| CNN MLE (ours)  | 0.76   | 0.61 | 0.60 | 2.53   | 1.00  | 4.38  | 4.40    | 2.70 | 3.64  | 11.21    | 9.11  | 8.18  |
|                 | S1-: 1 |      |      | Ski 2  |       |       | Taxaa 1 |      |       | Taxaa 2  |       |       |
|                 | SKI I  |      |      | SKI 2  |       |       | Taxco I |      |       | Taxco 2  |       |       |
|                 | Mean   | Med. | Std. | Mean   | Med.  | Std.  | Mean    | Med. | Std.  | Mean     | Med.  | Std.  |
| Y axis          | 8.31   | 7.24 | 5.80 | 8.11   | 7.37  | 6.94  | 8.00    | 4.62 | 13.10 | 5.77     | 4.66  | 4.92  |
| Y axis MLE      | 10.09  | 6.72 | 8.72 | 7.80   | 6.54  | 6.28  | 6.90    | 4.06 | 12.73 | 5.94     | 4.01  | 5.97  |
| Ground plane    | 8.27   | 5.50 | 8.36 | 7.36   | 6.90  | 5.17  | 10.44   | 8.13 | 13.04 | 8.07     | 6.79  | 7.44  |
| CNN MI E (ours) | 517    | 4 37 | 4 08 | 4 97   | 2 50  | 11 17 | 2 27    | 2.68 | 3.02  | 4 60     | 2 80  | 5.06  |

#### Scale Recovery

- Recover the scale factor and compare the magnitude of linear acceleration with IMU,  $\|\mathbf{a}\| / \|\mathbf{a}_m\|$ .
- **a** is linear acceleration estimated by our method.
- $\triangleright$   $\mathbf{a}_{\mathrm{m}}$  is linear acceleration of IMU.
- The scale ratio ||a||/||am|| remains around 1.0 in training sequences:
  - head: 1.0278 median, 1.1626 mean, 0.6186 std.
  - ▶ body: 0.9999 median, 1.1600 mean, 0.7739 std
- Recover scale factors for 11 different sequences each ranges between 1 mins to 15 mins.
- The result is exciting:
  - overall 1.0188 median, 1.1613 mean, and 0.7003 std.

![](_page_16_Figure_10.jpeg)

#### **Active Force and Torque Estimation**

- Active Force identification compete against
  - Net acceleration measured by IMU
  - > Optical flow to measure acceleration (like in egocentric activity recognition tasks)
  - Pooled Motion Feature representation (requires a pre-trained model)

![](_page_17_Figure_5.jpeg)

#### **Active Force and Torque Estimation**

- Estimate angular velocity in 11 different scenes.
- Compare the estimated angular velocity with measurements of gyroscope.
- > The correlation is also measured, which produces 0.87 mean correlation.

|                | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|----------------|------|------|------|------|------|------|------|------|------|------|------|
| Mean(rad/sec)  | 0.25 | 0.31 | 0.27 | 0.31 | 0.27 | 0.26 | 0.41 | 0.29 | 0.30 | 0.30 | 0.40 |
| Med. (rad/sec) | 0.18 | 0.30 | 0.17 | 0.27 | 0.26 | 0.22 | 0.36 | 0.23 | 0.22 | 0.24 | 0.36 |
| Std. (rad/sec) | 0.24 | 0.20 | 0.26 | 0.23 | 0.19 | 0.19 | 0.32 | 0.23 | 0.27 | 0.26 | 0.31 |
| Corr.          | 0.91 | 0.94 | 0.90 | 0.88 | 0.88 | 0.61 | 0.82 | 0.83 | 0.90 | 0.86 | 0.86 |

Table 2. Angular velocity comparison with gyroscope. Med.: median, Std.: standard deviation, Corr: correlation (perfect if 1)

Correlations in 11 different scenes are mostly close to 1.

#### **Qualitative Evaluation**

- > Apply the framework on real world data downloaded from YouTube (5 categories)
  - 1) mountain biking (1-10 m/s)
  - > 2) Flying: wingsuit jump (25-50 m/s) and speed flying with parachute (9-40 m/s)
  - 3) jetskiing at Canyon (4-20 m/s)
  - 4) glade skiing (5-12 m/s)
  - 5) Taxco urban downhill biking (5-15 m/s)
- These Sports vary in
  - Appearance of the Environment
  - Speed Range of the Motion
  - Composition of Passive/Active Forces
- Sufficiently convincing to demonstrate the robustness of the proposed computational framework.

#### **Qualitative Evaluation**

glade skiing (5-12 m/s);

![](_page_20_Figure_2.jpeg)

#### **Qualitative Evaluation**

Flying: wingsuit jump (25-50 m/s)

![](_page_21_Figure_2.jpeg)

### Conclusion & Discussion

![](_page_22_Picture_1.jpeg)

#### Conclusion

- This paper propose a new computational framework that evaluates camera wearer's physical sensation.
  - Gravity DirectionPrediction: through CNN + MLE (3D reconstruction of camera orientation)
  - > Physical Scale (speed and terrain): through the 3D trajectory reconstruction
  - > Active Force and Torque: through an optimization problem based on dynamics
- Quantitative experiments are operated on each individual estimation component and demonstrate the efficacy of these components.
- Qualitative experiments show that Force From Motion is decently applicable to a number of other sports (not shown in training set).

#### **Questions**?

![](_page_24_Figure_1.jpeg)

# Thanks!

![](_page_25_Picture_1.jpeg)

#### References

[1] Force from Motion: Decoding Physical Sensation from a First Person Video. H.S. Park, J-J. Hwang and J. Shi. CVPR 2016.

- Visual Demo: <u>http://www-users.cs.umn.edu/~hspark/ffm.html</u>
- Gravity Prediction on CNN Models: <u>https://github.com/jyhjinghwang/Force\_from\_Motion\_Gravity\_Models</u>

[2] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d shape from image streams. In CVPR, 2000.

[3] M.A.Brubaker and D.J.Fleet.The kneed walker for human pose tracking. In CVPR, 2008.

[4] M. A. Brubaker, D. J. Fleet, and A. Hertzmann. Physics-based person tracking using simplified lower-body dynamics. In CVPR, 2007.

[6] K.Choo and D.J.Fleety. People tracking using hybrid monte carlo filtering. In ICCV, 2001.

[9] A. Fathi, Y. Li, and J. M. Rehg. Learning to recognize daily actions using gaze. In ECCV, 2012.

[12] G. Johansson. Visual perception of biological motion and a model for its analysis. Perception and Psychophyics, 1973.

[13] T. Kanade and M. Hebert. First person vision. In IEEE, 2012.

[14] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast unsupervised ego-action learning for first-person sports videos. In *CVPR*, 2011. 2, 7

[15] J. Kopf, M. Cohen, and R. Szeliski. First person hyperlapse videos. SIGGRAPH, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

#### References

[18] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in egocentric video. In ICCV, 2013.

[22] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer, 2006.

[24] H. S. Park, E. Jain, and Y. Shiekh. 3D social saliency from head-mounted cameras. In NIPS, 2012.

[25] H. Pirsiavash and D. Ramanan. Recognizing activities of daily living in first-person camera views. In CVPR, 2012.

[26] G. Pusiol, L. Soriano, L. Fei-Fei, and M. C. Frank. Dis- covering the signatures of joint attention in child-caregiver interaction. In *CogSci*, 2014.

[27] J. M. Rehg, G. D. Abowd, A. Rozga, M. Romero, M. A. Clements, S. Sclaroff, I. Essa, O. Y. Ousley, Y. Li, C. Kim, H. Rao, J. C. Kim, L. L. Presti, J. Zhang, D. Lantsman, J. Bidwell, and Z. Ye. Decoding childrens social behavior. In *CVPR*, 2013.

[33] H.Sidenbladh, M.J.Black, and D.J.Fleet.Stochastictrack- ing of 3d human figures using 2d image motion. In ECCV, 2000. 2

[34] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. *TPAMI*, 2008. 2

[35] R. Urtasun, D. Fleet, and P. Fua. 3d people tracking with gaussian process dynamical models. In CVPR, 2006.

[38] X. Wei and J. Chai. Videomocap: Modeling physically real- istic human motion from monocular video sequences. *SIG-GRAPH*, 2010.

[43] Z. Ye, Y. Li, Y. Liu, C. Bridges, A. Rozga, and J. M. Rehg. Detecting bids for eye contact using a wearable camera. In *FG*, 2015.

[44] R. Yonetani, K. M. Kitani, and Y. Sato. Ego-surfing first person videos. In CVPR, 2015.