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Introduction
Target Problem, Essential Concepts, Motivations



Introduction I: First Conceptual Touch

u Target problem: Model camera carrier’s physical sensation over the videos at
his/her first-person perspective.

u This paper initiate a computational framework to evaluate the ego-motion
from an egocentric video with the domain knowledge of physical body 
dynamics.

u What is the physical sensation?

u Conceptually, analytic components of one’s physical motion.

u Mechanically, three ingredients: gravity, physical scale, and active force and Torque.



Introduction II: A Visual Demo



Introduction III: More on Techniques

u Technical Challenges

u Limited observations of one’s body parts (body pose is not visible from the camera).

u Scale and orientation are ambiguous from the motion.

u Scene and activity vary case by case (environmental appearance, camera
placement, and motion pattern).

u Applications:

u computational sport analytics (mountain biking, urban bike racing, skiing and etc.).

u activity recognition, video indexing, and content generation for virtual reality.



Force From Motion
Gravity, scale, and active force and torque are three key ingredients that 
evaluates the physical sensation of one’s motion. 



Force from Motion I: Gravity Direction

u Intuition: image cues (i.e. trees and buildings) imply the gravity direction.

u Approach: construct a convolutional neural network [16] to predict a gravity 
direction in a 2D image. This per image prediction is integrated over multiple 
frames by leveraging structure from motion. 

u Define a 3D unit gravity direction 

u Compute maximum a posteriori (MAP) estimate the gravity direction given a 
set of images 

u Prior distribution encodes how the gravity is oriented with respect to the 
heading direction. Prior distribution using a mixture of von Mises-Fisher 
distributions 



Gravity Direction (cont.)
u Image likelihood measures how well the aligned 3D gravity direction is

consistent with cues on the i-th image. 

u Learn the image likelihood function using the convolutional neural network (CNN) 
proposed by Krizhevsky et al. [16] with a few minor modifications.

u Resizing: warped images (1280 × 720) are resized to 320 × 180 as inputs for the CNN 

u Target Shrinking: train the network to predict a probability of the projected angle 
discretized by 1 degree between −30 and 30 degrees. 

u Predictions on multiple frames are consolidated to predict the 3D gravity direction 
by the reconstructed 3D camera orientations.



Force from Motion II: Physical Scale

u Two yielded torques must be balanced to maintain the leaning angle :

u The normal force, , produces a torque, .

u the friction force produces an opposite directional torque .

u By equating , we got

u is the linear acceleration in the lateral direction, which is measured from 
the reconstructed 3D camera trajectory, is a scale factor that maps from 
the 3D reconstruction to the physical world. 



Force from Motion III:
Active Forces and Torque

u A single rigid body that undergoes motion as a resultant of forces 
and torque can written as

u Represent the first formula in world coordinate system {W} and the second in 
the body coordinate system {B}.

u The active force and torque are composed of thrust force  , roll torque  , 
and yaw (steering) torque  

u The passive force and torque are composed of the following components 



Active Forces and Torque (cont.)

u Compact form of motion description:

u Where 

u is the inertial matrix, is the Coriolis matrix.

u is the passive force and torque, and is the active component. 

u The state describes the camera ego-motion where is the 
camera center and is the axis-angle representation of camera rotation.

u J is a workspace mapping matrix written as: 

u This describes motion in terms of active force and torque component, , which 
allows us to directly map between input and the resulting motion. 



Optimal Control: Inverse Dynamics

u Integration of three ingredients for physical sensation (gravity direction, physical 
scale, and active force and torque) into the following optimization problem:

u Notations:
u measures reprojection error 

u the camera projection matrix at time instant 

u is a 3D point, and is the j-th 2D point measurement at time instant. 

u The goal is to infer the unknown 3D world structure X, and active component for 
the rigid body dynamics.

u Last term in the cost function regularizes active forces such that the resulting input 
profile over time is continuous.

u The above objective function can be solved using Levenberg-Marquardt algorithm [22].



Experimentation



Quantitative Evaluation
u Experimental setup:

u Two Inertial Measurement Unit (IMU): one on head and the other on body.

u Two Cameras: One on head and the other some place to monitor behaviors.

u Training Set: 29 Biking Sequences (10 secs with 300 frames).

u Operate quantitative evaluations in three criteria:

u Gravity Prediction

u Scale Recovery

u Active Force and Torque Estimation



Gravity Prediction
u Compare our predictions using CNN and reconstructed camera orientation with 

three baseline methods:

u a) Y axis: prediction by the image Y axis as a camera is often oriented upright 

u b) Y axis MLE: prediction by a) consolidated by the reconstructed camera orientation

u c) ground plane normal. The ground plane is estimated by fitting a plane with RANSAC 
on the sparse point cloud. 

u Test our method on manually annotated data 



Scale Recovery
u Recover the scale factor and compare the magnitude of linear acceleration 

with IMU,                  .

u is linear acceleration estimated by our method.

u is linear acceleration of IMU.

u The scale ratio                   remains around 1.0
in training sequences: 

u head: 1.0278 median, 1.1626 mean, 0.6186 std.

u body: 0.9999 median, 1.1600 mean, 0.7739 std

u Recover scale factors for 11 different sequences 
each ranges between 1 mins to 15 mins.

u The result is exciting:

u overall 1.0188 median, 1.1613 mean, and 0.7003 std. 



Active Force and Torque Estimation

u Active Force identification compete against

u Net acceleration measured by IMU 

u Optical flow to measure acceleration (like in egocentric activity recognition tasks)

u Pooled Motion Feature representation (requires a pre-trained model)

u Our active force identification outperforms other baseline methods that do 
not take into account active force decomposition. 



Active Force and Torque Estimation

u Estimate angular velocity in 11 different scenes. 

u Compare the estimated angular velocity with measurements of gyroscope.

u The correlation is also measured, which produces 0.87 mean correlation. 

u Correlations in 11 different scenes are mostly close to 1.



Qualitative Evaluation
u Apply the framework on real world data downloaded from YouTube (5 categories)

u 1) mountain biking (1-10 m/s) 

u 2) Flying: wingsuit jump (25-50 m/s) and speed flying with parachute (9-40 m/s) 

u 3) jetskiing at Canyon (4-20 m/s)

u 4) glade skiing (5-12 m/s)

u 5) Taxco urban downhill biking (5-15 m/s)

u These Sports vary in 

u Appearance of the Environment

u Speed Range of the Motion

u Composition of Passive/Active Forces

u Sufficiently convincing to demonstrate the robustness of the proposed 
computational framework.



Qualitative Evaluation
u glade skiing (5-12 m/s);



Qualitative Evaluation
u Flying: wingsuit jump (25-50 m/s)



Conclusion & Discussion



Conclusion
u This paper propose a new computational framework that evaluates camera wearer’s

physical sensation.

u Gravity DirectionPrediction: through CNN + MLE (3D reconstruction of camera orientation)

u Physical Scale (speed and terrain): through the 3D trajectory reconstruction

u Active Force and Torque: through an optimization problem based on dynamics

u Quantitative experiments are operated on each individual estimation component and
demonstrate the efficacy of these components.

u Qualitative experiments show that Force From Motion is decently applicable to a
number of other sports (not shown in training set).



Questions?



Thanks!
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