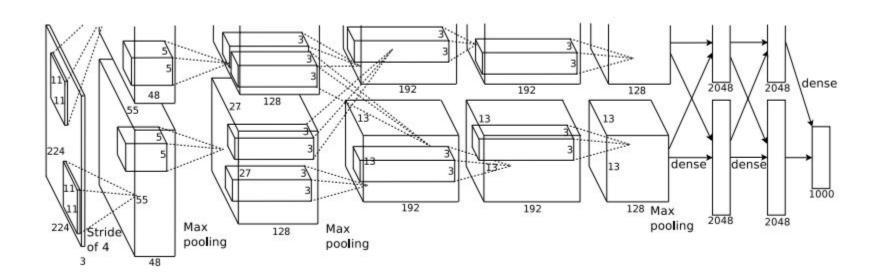
DeViSE: A Deep Visual-Semantic Embedding Model

Frome et al., Google Research

Presented by: Tushar Nagarajan

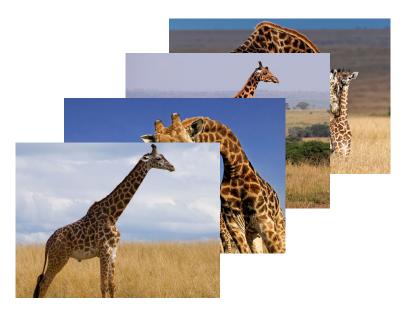
The year is 2012...



The year is 2012...

Cat? Giraffe? Koala? Yes What's that? Of course! Don't be silly.

The year is 2012...



Collect more giraffe data

Horse?

:|

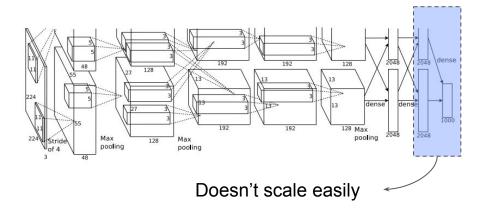
Imagenet 1k

- Only 1000 classes
- 3 year olds have a 1k word vocabulary

Getting data is hard

Label: "This thing"

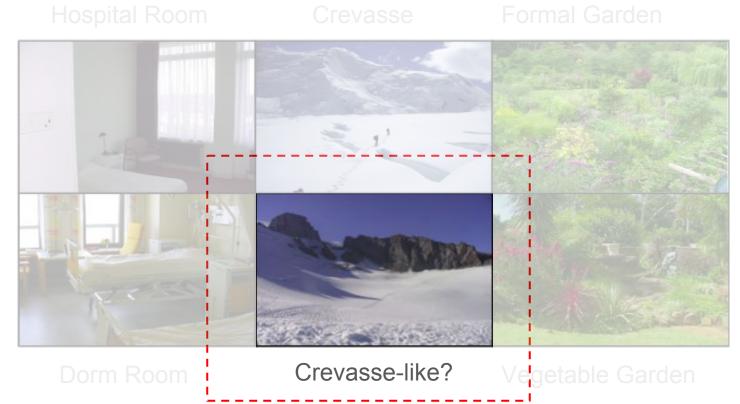
Re-training networks is annoying



Structure in Labels

Label Structure - Similarity

Label Structure - Similarity

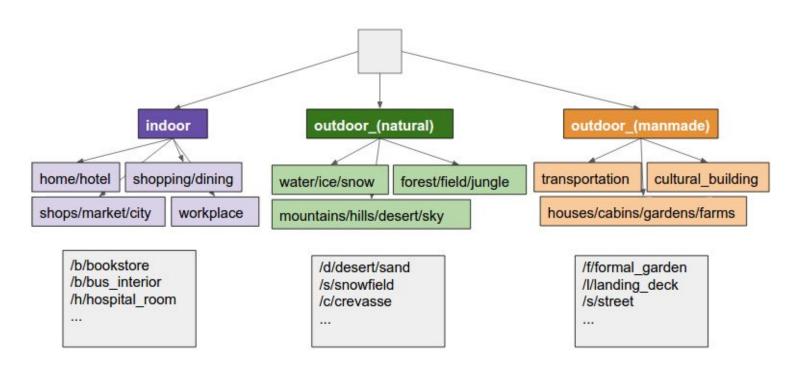


Label Structure - Similarity

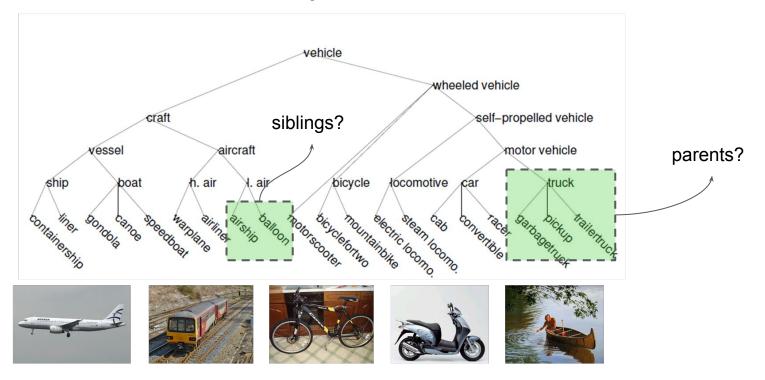
similar(Crevasse, Snowfield) **Visual**

Semantic

Label Structure - Hierarchy

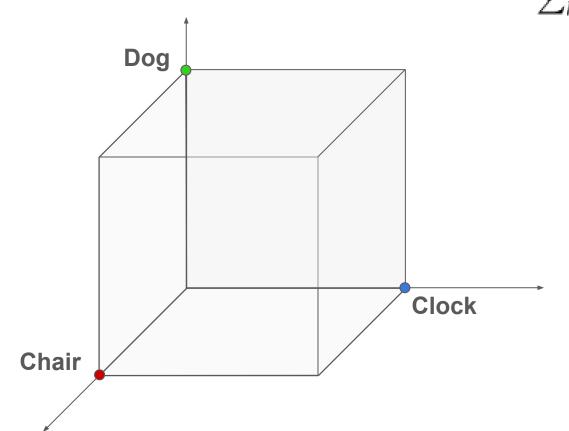


Label Structure - Hierarchy



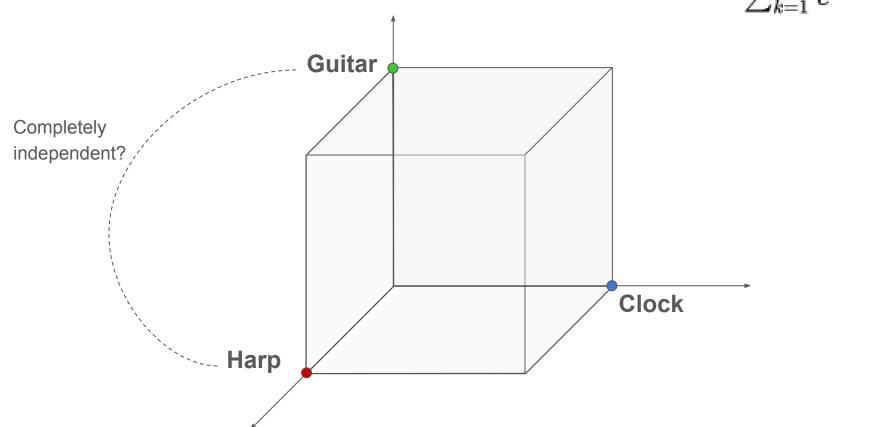
Does Softmax Care?

$$P(y = j | \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$



Does Softmax Care?

$$P(y=j|\mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$

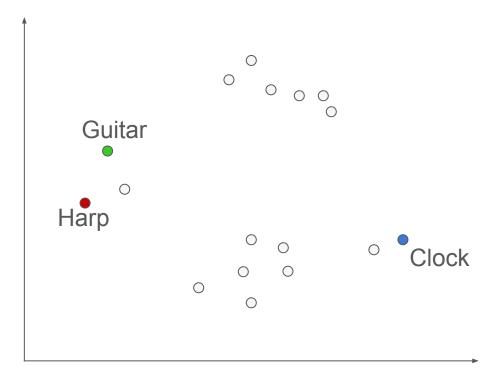


Does Softmax Care?

Are labels independent?

Not really - guitar and harp are more closely related than guitar and clock.

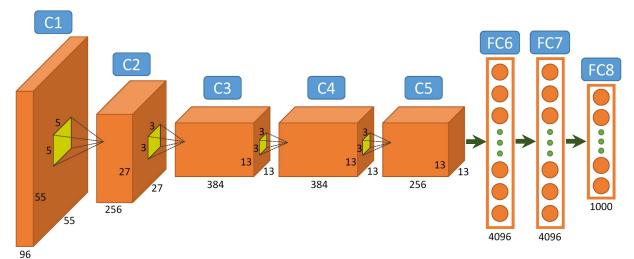
Abandon softmax - move to label space



Regress to Label Space

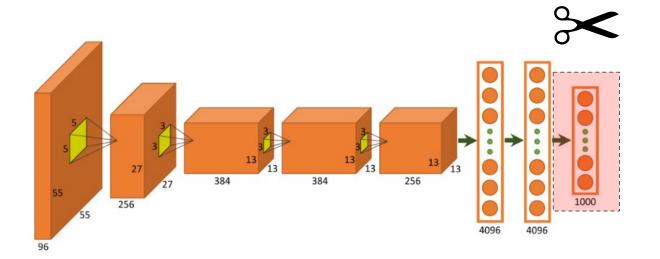
Step 1: Train a CNN for classification

- Regular CNN for object classification
- 1000 way softmax output



Regress to Label Space

Step 2: Abandon Softmax



Regress to Label Space

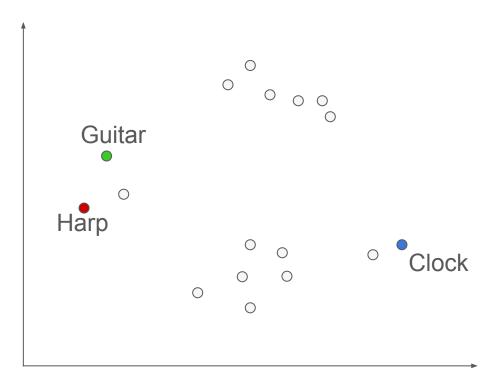
Step 2: Abandon Softmax What regression labels? 27 256

Label Space

We didn't think this through...

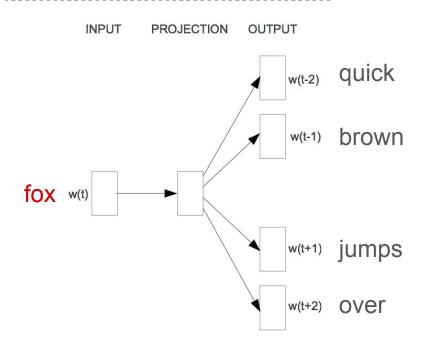
Where do we get this space from?

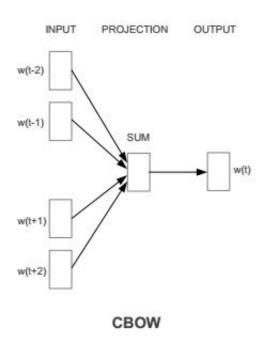
Hint: Imagenet classes are words!



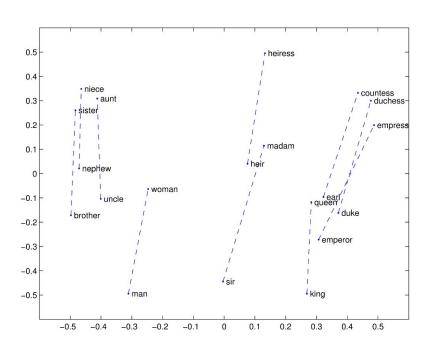
Word Embeddings - Skip-gram

The quick brown fox jumps over the lazy dog.





Word Embeddings - Skip-gram

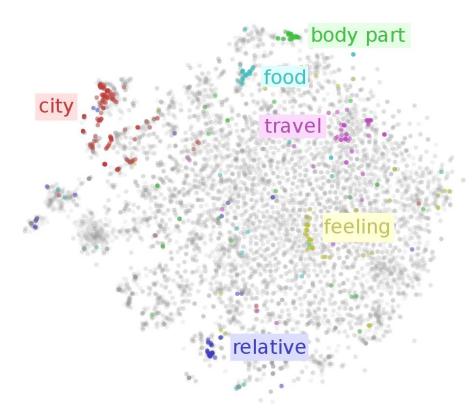


0.4 0.3 0.2 0.1 -0.1-0.2 -0.3-0.4-0.3 -0.10.1 0.3 0.5 0.6

Gender encoded into subspace

comparative - superlative info

Word Embeddings - Skip-gram



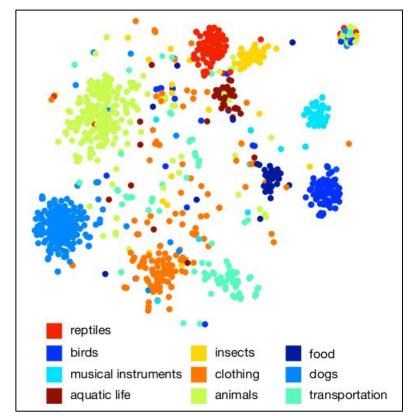
Step 2: Abandon Softmax

Word Embeddings - Skip-gram

Step 3: Train a LM on **5.7M** documents from wikipedia

- 20 word window
- Hierarchical Softmax
- 500D vectors

Q: What about multi-word classes like "snow leopard"?

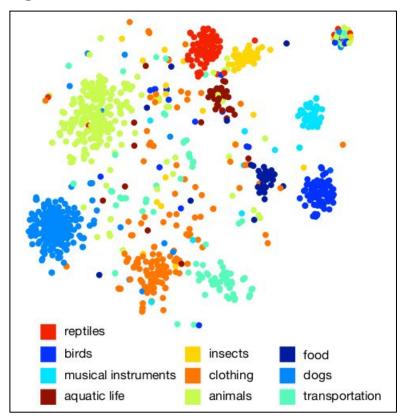


Step 1: Train a CNN for classification

Step 2: Abandon Softmax Step 3: Train a skip-gram LM

Word Embeddings - Skip-gram

Tiger Shark	Car				
Bull shark	Cars				
Blacktip shark	Muscle car				
Shark	Sports car				
Blue shark	Automobile				
•••					

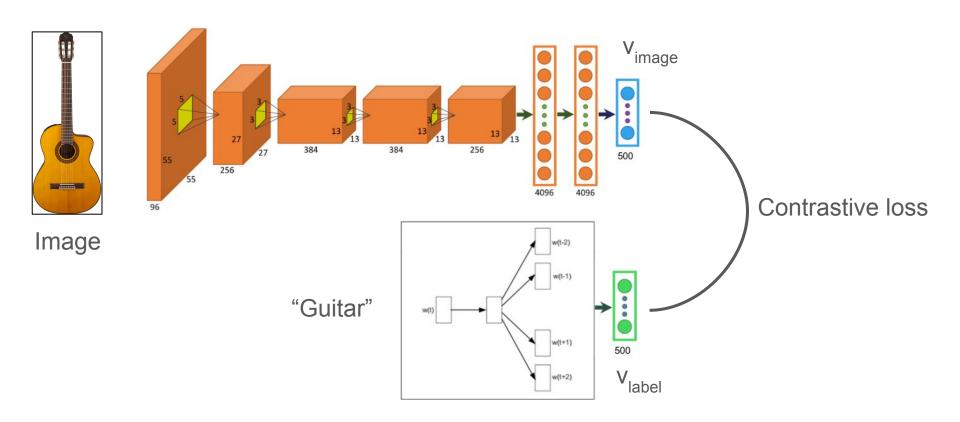


Step 1: Train a CNN for classification

Step 2: Abandon Softmax

Step 3: Train a skip-gram LM

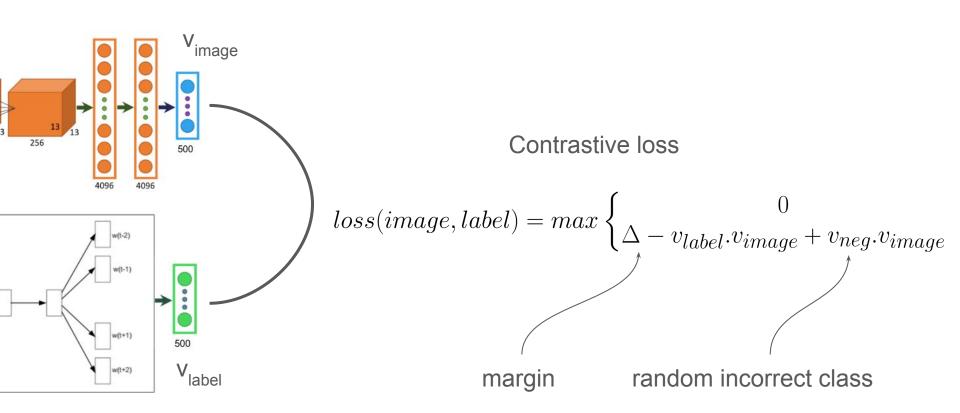
Step 4: Surgery



Step 2: Abandon Softmax

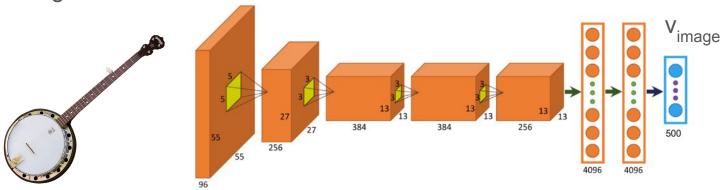
Step 3: Train a skip-gram LM

Step 4: Surgery



Inference - ZSL

When a new image comes in:

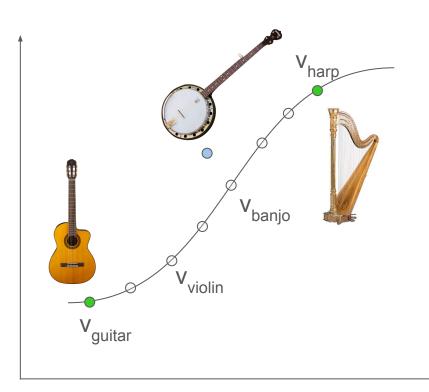


1. Push it through the CNN, get v_{image}

Inference - ZSL

When a new image comes in:

1. Push it through the CNN, get v_{image}

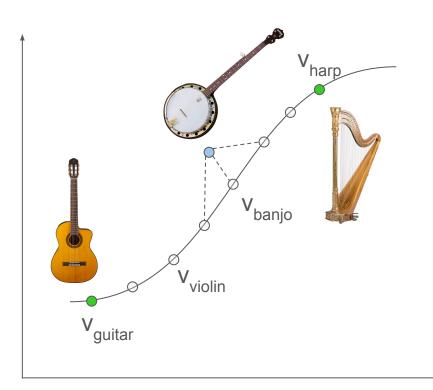


Inference - ZSL

When a new image comes in:

- 1. Push it through the CNN, get v_{image}
- 2. Find the **nearest** v_{label} to v_{image}

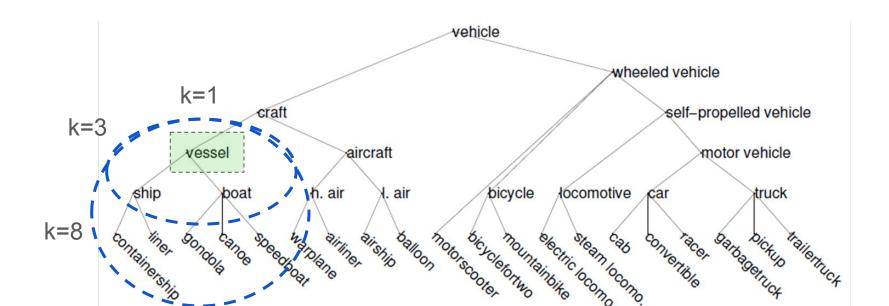
Potentially unseen labels!



Results

Evaluation Metrics

- Flat hit @ k : Regular precision
- Hierarchical precision @ k:



Results on Imagenet

		Flat hit@k (%)				Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20	
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319	
DeViSE	500	-53.2	-65.2-	76.7-	- 83.3-	0.447	0.352	0.331	0.341	
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331	
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292	
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042	

Softmax is hard to beat on raw classification on 1k classes

DeViSE gets pretty close with a regression model!

Results - Imagenet Classification

		Flat hit@k (%)			Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	_0.452_	0.342	-0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	-0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Hierarchical precision tells a different story

DeViSE finds labels that are **semantically relevant**

Results - Imagenet ZSL

Our model

Softmax over ImageNet 1K

eyepiece, ocular Polaroid compound lens

telephoto lens, zoom lens rangefinder, range finder

typewriter keyboard tape player reflex camera CD player space bar

Softmax over ImageNet 1K

fruit pineapple

Our model

sweet orange sweet orange tree, ...

pineapple, ananas coral fungus pineapple plant, Ananas .. artichoke, globe artichoke sea anemone, anemone cardoon

Correct label @1

garbage?

Results - Imagenet ZSL

Our model

Softmax over ImageNet 1K

comestible, edible, ... dressing, salad dressing cauliflower Sicilian pizza vegetable, veggie, veg fruit

pot, flowerpot guacamole cucumber, cuke broccoli

Our model

Softmax over ImageNet 1K

dune buggy, beach buggy searcher beetle, ... seeker, searcher, quester projectile, missile Tragelaphus eurycerus, ... sports car, sport car

warplane, military plane missile bongo, bongo drum submarine, pigboat, sub, ...

Results - Imagenet ZSL

Data Set	Model	Fla	at hit	@k	Hie	Hierarchical @k			
	Model	1	5	20	1	5	20		
							-		
3-hop	DeViSE	1.7	5.3	12.5	1.7	19.1	23.6		
	Softmax	-	-	-	0	15.7	13		
Imagenet 21k	DeViSE	8.0	2.5	6	0.8	7.2	9.6		
	Softmax	_	-		Q-	7.1	6.5		

3-hop: Unknown classes 3 hops away from imagenet labels

Imagenet 21k: **ALL unknown** classes

Chance: 0.00047 **168x better!**

Summary

: Step 1: Train a CNN for classification

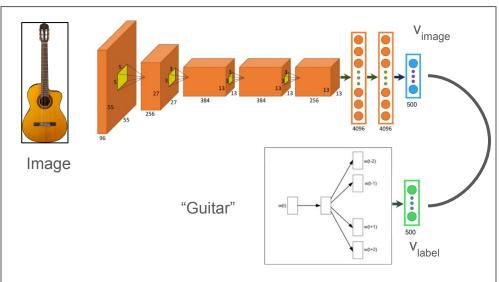
Step 2: Abandon Softmax

Step 3: Train a skip-gram LM

Step 4: Surgery

Step 5: Profit?

Machine-learning tech glues together image eyeballing and text grokking



Discussion

Embeddings are not fine-tuned during training

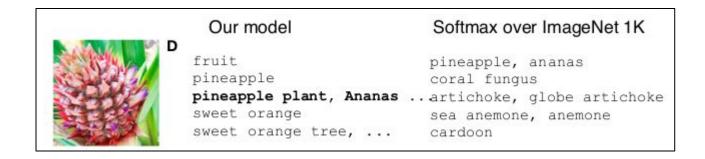
Semantic similarity is a happy coincidence

- sim(cat, kitten) = 0.746
- sim(cat, dog) = **0.761** (!!)

Semantic similarity is a **depressing** coincidence

sim(happy, depressing) = ?

Discussion



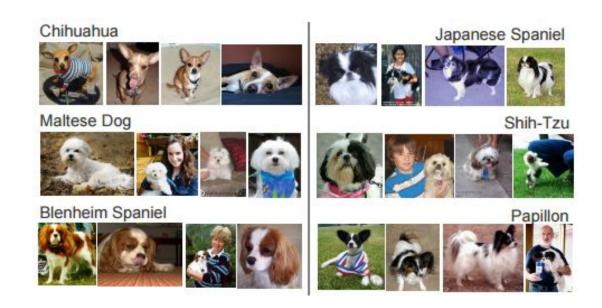
Nearest neighbors of **pineapple**:

Pineapples, papaya, mango, avocado, banana ...

Discussion

Categories are fine-grained

We TRUST softmax to distinguish them



Conclusion

Label spaces to embed semantic information

Shared embedding spaces

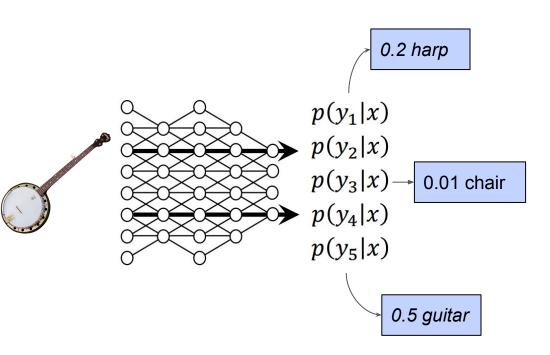
background knowledge for ZSL

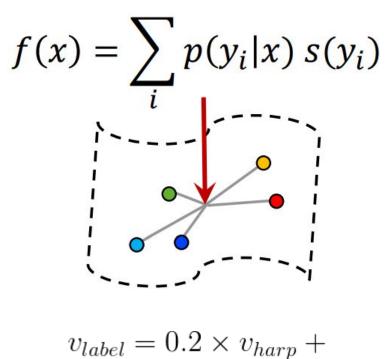
Zedonk

Thank you

Questions?

Bonus: ConSE





$$v_{label} = 0.2 \times v_{harp} + 0.5 \times v_{guitar} + 0.01 \times v_{chair} + \dots$$