Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels

Ishan Misra¹ C. Lawrence Zitnick³ Margaret Mitchell² Ross Girshick³

¹Carnegie Mellon University

² Microsoft Research

³ Facebook AI Research

(experiments presented by An T. Nguyen)

Paper Review

Human Reporting Bias

- Captions, tags, keywords ...
- Report only salient/important objects.
- Cause visually biased classifiers.

Paper Review

Human Reporting Bias

- Captions, tags, keywords ...
- Report only salient/important objects.
- Cause visually biased classifiers.

This paper

- Model the bias as hidden variables.
- Improve classification of visual concepts.

Examples (from MSCOCO dataset)

Captions:

- a small dog is on a wood desk
- a dog is sitting on a desk behind a computer.
- dog sitting on a desk next to a monitor
- a little dog with a leash laying on a desk behind a computer monitor.
- a dog sits on a desk behind a computer

Examples

Detection labels

- ► dog
- ► tv

remote

- ► cup
- book book

Two Classifiers

- 1. Visual Presence Classifier \mathbf{v}
- 2. Relevance Classifier r

Two Classifiers

- 1. Visual Presence Classifier \mathbf{v}
- 2. Relevance Classifier r

My experiments

Analyze the relevance classifier ${\bf r}$

1. **r** with varying objects sizes, orientations (is **r** sensitive to sizes and orientations?)

My experiments

Analyze the relevance classifier r

- r with varying objects sizes, orientations (is r sensitive to sizes and orientations?)
- Evaluate the accuracy or r. (in detecting (un)reported objects)

My experiments

Analyze the relevance classifier r

- 1. **r** with varying objects sizes, orientations (is **r** sensitive to sizes and orientations?)
- Evaluate the accuracy or r. (in detecting (un)reported objects)
- 3. Evaluate the learned 'representation' (as features in scene classification).

Reportability with varying size

(image from the paper, black line = prob. of not reporting)

Small size correlates with not reported.

Reportability with varying size

(image from the paper, black line = prob. of not reporting)

- Small size correlates with not reported.
- Question: Does r capture this?

(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Observations:

- 1. (Almost) same from 100% to 60%
- 2. But increase from 60% to 20%

(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Observations:

- 1. (Almost) same from 100% to 60%
- 2. But increase from 60% to 20%

(Possible) explanation:

- r is not sensitive to size. (it predicts based on other features)
- 2. Objects too small \rightarrow not recognized \rightarrow default to reported

Experiment: varying orientations

Experime

Experiment: varying orientations

(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Experiment: varying orientations

(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

- **r** sensitive to orientations.
- ► Unusual rotation → not recognized → ...

Accuracy of ${\bf r}$

(Surprisingly not reported by the paper)

For each concept:

- ▶ Negative instances: object present but no captions mentioned.
- Positive instances: object present and captions mentioned.

Accuracy of ${\bf r}$

(Surprisingly not reported by the paper)

For each concept:

- ▶ Negative instances: object present but no captions mentioned.
- Positive instances: object present and captions mentioned.
- Metric: AUC of **r** prediction.

Accuracy of ${\boldsymbol{\mathsf{r}}}$

(over all images in test set)

r outputs 4 'probabilities' for each concept.

- r outputs 4 'probabilities' for each concept.
- \blacktriangleright 1000 concepts \rightarrow 4000-dim vector.

- **r** outputs 4 'probabilities' for each concept.
- 1000 concepts \rightarrow 4000-dim vector.
- Assumed to be features for scene classification.

- **r** outputs 4 'probabilities' for each concept.
- ▶ 1000 concepts \rightarrow 4000-dim vector.
- Assumed to be features for scene classification.
- Pretext task = predict human reporting bias.

- **r** outputs 4 'probabilities' for each concept.
- 1000 concepts \rightarrow 4000-dim vector.
- Assumed to be features for scene classification.
- Pretext task = predict human reporting bias.
- Same data as in Assignment 2.

(LinearSVM, no finetuning, test set 2)

Features	Accuracy(%)
HumanBias	58.24
Alex	81.36
HumanBias + Alex	82.62
ResNet	87.12
HumanBias + ResNet	87.73

(LinearSVM, no finetuning, test set 2)

Features	Accuracy(%)	
HumanBias	58.24	Features are informative
Alex	81.36	 Complementary to Alex & ResNet
HumanBias + Alex	82.62	
ResNet	87.12	
HumanBias + ResNet	87.73	

Confusion Matrices for Human Bias

Confusion Matrices for Human Bias

- Less distinctive, mix categories.
- e.g. exterior,mansion,chalet.

Summary

- **r** classifies into reported/unreported by human.
- Sensitive to orientations, not to scale.
- Good performance in AUC.
- Learn informative features.

Summary

- **r** classifies into reported/unreported by human.
- Sensitive to orientations, not to scale.
- Good performance in AUC.
- Learn informative features.

Questions?