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Introduction

Problem

I Learn Image Representation without labels ...

I ... that useful for a real task (e.g. Object Recognition).

Idea

I Set up a pretext task.

I To solve pretext task, model must learn good representation.

Learn to predict a “natural signal”...

I ...that available for ‘free’.

I This paper: Sound.

I Others: Camera motion.
(Agrawal et. al., Jayaraman & Grauman, 2015)
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Data

Yahoo Flickr Creative Commons 100 Million Dataset.
(Thomee et. al. 2015)

I 360,000 video subset.

I Sample one image per 10sec.

I Extract 3.75 sec of sound around.

I 1.8 mil. train examples.
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Examples 1
(flickr.com/photos/41894173046@N01/4530333858)

Sound

Video
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Examples 2
(flickr.com/photos/42035325@N00/8029349128)

Sound

Video
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Examples 3
(flickr.com/photos/zen/2479982751)

Sound

Video
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Challenges

I Sound is sometimes indicative of image.

I But sometimes not.

Sound producing objects

I outside image.

I not always produce sound.

Video

I is edited.

I has noisy, background sound.

Question: What representation can we learn?
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Represent sound

Pre-process

I Filter waveform ... (mimic human ear).

I Compute statistics (e.g. mean of each freq. channel).

I → sound texture: 502-dim vector.

Two labeling models

1. Cluster sound texture (k-mean).

2. PCA, 30 projections, threshold → binary codes.

Given an image

1. Predict sound cluster.

2. Predict 30 binary codes (multi-label classification).
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Training

Convolutional Neural Network

I Similar to (Krizhevsky et. al. 2012).

I Implemented in Caffe.
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Training
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Visualizing neurons (in upper layers)

Method: for each neuron

1. Find images with large activation.

2. Find locations with large contribution to activation.

3. Highlight these regions.

4. Show to human on AMT.
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Visualizing neurons
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Detectors Histogram
Sound

Ego Motion

Labeled Scenes (supervised)
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Observations

I Each method learn some kinds of representations...

I ...depend on the pretext task.

Representation learned from sound

I Objects with distinctive sound.

I Complementary to other methods.
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Object/Scene Recognition (1-vs-rest SVM)

Comparable Performance to Others

1. Agrawal et.al. 2015 4. Doersch et.al 2015
20. Krähenbühl et.al. 2016 35. Wang & Gupta 2015 16
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Object Detection (Pretrain Fast-RCNN)

Similar Performance to Motion
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Discussion

Sound

I is abundant.

I can learn good representations.

I complementary to visual info.

Future work

I Other sound representations.

I What object/scene detectable by sound?
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Bonus: Visually Indicative Sound
(Owens et. al. 2016, vis.csail.mit.edu)
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