Ambient Sound Provides Supervision for Visual Learning

Andrew Owens¹, Jiajun Wu¹, Josh H. McDermott¹, William T. Freeman^{1,2}, and Antonio Torralba¹

¹MIT & ²Google Research

ECCV 2016

Presented by An T. Nguyen

Problem

- Learn Image Representation without labels ...
- ... that useful for a real task (e.g. Object Recognition).

Problem

- Learn Image Representation without labels ...
- ► ... that useful for a real task (e.g. Object Recognition).
 Idea
 - Set up a pretext task.
 - To solve pretext task, model must learn good representation.

Problem

Learn Image Representation without labels ...

► ... that useful for a real task (e.g. Object Recognition).
Idea

- Set up a pretext task.
- To solve pretext task, model must learn good representation.

Learn to predict a "natural signal" ...

...that available for 'free'.

Problem

- Learn Image Representation without labels ...
- ► ... that useful for a real task (e.g. Object Recognition).
 Idea
 - Set up a pretext task.
 - To solve pretext task, model must learn good representation.

Learn to predict a "natural signal" ...

- ...that available for 'free'.
- This paper: Sound.

Problem

- Learn Image Representation without labels ...
- ► ... that useful for a real task (e.g. Object Recognition).
 Idea
 - Set up a pretext task.
 - To solve pretext task, model must learn good representation.

Learn to predict a "natural signal" ...

- ...that available for 'free'.
- This paper: Sound.
- Others: Camera motion. (Agrawal et. al., Jayaraman & Grauman, 2015)

Yahoo Flickr Creative Commons 100 Million Dataset. (Thomee et. al. 2015)

Data

Yahoo Flickr Creative Commons 100 Million Dataset. (Thomee et. al. 2015)

- 360,000 video subset.
- Sample one image per 10sec.
- Extract 3.75 sec of sound around.
- ▶ 1.8 mil. train examples.

Examples 1 (flickr.com/photos/41894173046@N01/4530333858) Sound

Examples 2 (flickr.com/photos/42035325@N00/8029349128) Sound

Examples 3 (flickr.com/photos/zen/2479982751) Sound

- Sound is sometimes indicative of image.
- But sometimes not.

- Sound is sometimes indicative of image.
- But sometimes not.

Sound producing objects

- outside image.
- not always produce sound.

- Sound is sometimes indicative of image.
- But sometimes not.

Sound producing objects

- outside image.
- not always produce sound.

- is edited.
- has noisy, background sound.

- Sound is sometimes indicative of image.
- But sometimes not.

Sound producing objects

- outside image.
- not always produce sound.

Video

- is edited.
- has noisy, background sound.

Question: What representation can we learn?

Pre-process

Pre-process

Filter waveform ... (mimic human ear).

Pre-process

- Filter waveform ... (mimic human ear).
- Compute statistics (e.g. mean of each freq. channel).

Pre-process

- Filter waveform ... (mimic human ear).
- Compute statistics (e.g. mean of each freq. channel).
- \rightarrow sound texture: 502-dim vector.

Pre-process

- Filter waveform ... (mimic human ear).
- Compute statistics (e.g. mean of each freq. channel).
- \rightarrow sound texture: 502-dim vector.

Two labeling models

1. Cluster sound texture (k-mean).

Pre-process

- Filter waveform ... (mimic human ear).
- Compute statistics (e.g. mean of each freq. channel).
- \rightarrow sound texture: 502-dim vector.

Two labeling models

- 1. Cluster sound texture (k-mean).
- 2. PCA, 30 projections, threshold \rightarrow binary codes.

Pre-process

- Filter waveform ... (mimic human ear).
- Compute statistics (e.g. mean of each freq. channel).
- \rightarrow sound texture: 502-dim vector.

Two labeling models

- 1. Cluster sound texture (k-mean).
- 2. PCA, 30 projections, threshold \rightarrow binary codes.

Given an image

- 1. Predict sound cluster.
- 2. Predict 30 binary codes (multi-label classification).

Training

Training

Convolutional Neural Network

- Similar to (Krizhevsky et. al. 2012).
- Implemented in Caffe.

Training

(a) Images grouped by audio cluster

(b) Clustered audio stats. (c) CNN model

Method: for each neuron

1. Find images with large activation.

- 1. Find images with large activation.
- 2. Find locations with large contribution to activation.

- 1. Find images with large activation.
- 2. Find locations with large contribution to activation.
- 3. Highlight these regions.

- 1. Find images with large activation.
- 2. Find locations with large contribution to activation.
- 3. Highlight these regions.
- 4. Show to human on AMT.

Detectors Histogram

Sound

Detectors Histogram

Sound

Ego Motion

Detectors Histogram

Sound

Ego Motion

Labeled Scenes (supervised)

Observations

- Each method learn some kinds of representations...
- ...depend on the pretext task.

Observations

- Each method learn some kinds of representations...
- ...depend on the pretext task.

Representation learned from sound

- Objects with distinctive sound.
- Complementary to other methods.

Object/Scene Recognition (1-vs-rest SVM)

 1. Agrawal et.al. 2015
 4. Doersch et.al 2015

 20. Krähenbühl et.al. 2016
 35. Wang & Gupta 2015

Method	VOC Cls. ($MmAP$)				SUN397 (%acc.)			
	$\max 5$	pool5	fc6	fc7	max5	pool5	fc6	fc7
Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means [20] Tracking [35] Patch pos. [4] Egomotion [1]	36.7 39.4 35.8 28.9 27.5 33.5 26.8 22.7	$\begin{array}{c} 45.8 \\ \textbf{46.7} \\ 44.0 \\ 37.5 \\ 34.8 \\ 42.2 \\ 46.1 \\ 31.1 \end{array}$	44.8 47.1 44.4 35.3 33.9 42.4 -	44.3 47.4 44.4 32.5 32.1 40.2	17.3 17.1 14.6 10.7 11.6 14.1 9.8 9.1	22.9 22.5 19.5 15.2 14.9 18.7 22.2 11.3	20.7 21.3 18.6 11.4 12.8 16.2	14.9 21.4 17.7 7.6 12.4 15.1
ImageNet [21] Places [39]	63.6 59.0	65.6 63.2	69.6 65.3	73.6 66.2	29.8 39.4	34.0 42.1	37.8 46.1	37.8 48.8

Object/Scene Recognition (1-vs-rest SVM)

(a) Image classification with linear SVM

1. Agrawal et.al. 2015	4. Doersch et.al 2015
20. Krähenbühl et.al. 2016	35. Wang & Gupta 2015

Method	VOC Cls. (%mAP)				SUN397 (%acc.)			
	max5	pool5	fc6	fc7	max5	pool5	fc6	fc7
Sound (cluster) Sound (binary) Sound (spect.) Texton-CNN K-means [20] Tracking [35] Patch pos. [4] Egomotion [1]	36.7 39.4 35.8 28.9 27.5 33.5 26.8 22.7	$\begin{array}{c} 45.8 \\ \textbf{46.7} \\ 44.0 \\ 37.5 \\ 34.8 \\ 42.2 \\ 46.1 \\ 31.1 \end{array}$	44.8 47.1 44.4 35.3 33.9 42.4 -	44.3 47.4 44.4 32.5 32.1 40.2	17.3 17.1 14.6 10.7 11.6 14.1 9.8 9.1	22.9 22.5 19.5 15.2 14.9 18.7 22.2 11.3	20.7 21.3 18.6 11.4 12.8 16.2	14.9 21.4 17.7 7.6 12.4 15.1
ImageNet [21] Places [39]	63.6 59.0	65.6 63.2	69.6 65.3	73.6 66.2	29.8 39.4	34.0 42.1	37.8 46.1	37.8 48.8

Object/Scene Recognition (1-vs-rest SVM)

(a) Image classification with linear SVM

Comparable Performance to Others

 1. Agrawal et.al. 2015
 4. Doersch et.al 2015

 20. Krähenbühl et.al. 2016
 35. Wang & Gupta 2015

Object Detection (Pretrain Fast-RCNN)

 1. Agrawal et.al. 2015
 4. Doersch et.al 2015

 20. Krähenbühl et.al. 2016
 35. Wang & Gupta 2015

Method	(% mAP)
Random init. [20]	41.3
Sound (cluster) Sound (binary)	$\begin{array}{c} 44.1 \\ 43.3 \end{array}$
$ \begin{array}{c} \text{Motion} [35,20] \\ \hline \\ $	44.0
Patch pos. $[4,20]$	$41.8 \\ 46.6$
Calib. $+$ Patch [4,20]	51.1
ImageNet [21]	57.1
Places [39]	52.8

Object Detection (Pretrain Fast-RCNN)

(b) Finetuning detection

1. Agrawal et.al. 2015	4. Doersch et.al 2015
20. Krähenbühl et.al. 2016	35. Wang & Gupta 2015

Method	(% mAP)
Random init. [20]	41.3
Sound (cluster) Sound (binary)	$\begin{array}{c} 44.1 \\ 43.3 \end{array}$
Motion $[35,20]$	44.0
Patch pos. $[4,20]$	46.6
Calib. $+$ Patch $[4,20]$	51.1
ImageNet [21] Places [39]	57.1 52.8

Object Detection (Pretrain Fast-RCNN)

(b) Finetuning detection

Similar Performance to Motion

 1. Agrawal et.al. 2015
 4. Doersch et.al 2015

 20. Krähenbühl et.al. 2016
 35. Wang & Gupta 2015

Discussion

Sound

- is abundant.
- can learn good representations.
- complementary to visual info.

Discussion

Sound

- is abundant.
- can learn good representations.
- complementary to visual info.

Future work

- Other sound representations.
- What object/scene detectable by sound?

Bonus: Visually Indicative Sound

(Owens et. al. 2016, vis.csail.mit.edu)