Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Abhinav Gupta, Alexei A. Efros

Presenter: Yiming Pang
Outline

• Motivation
• Approach
• Experiment
 • Low-level visualization of features
 • Have a deep dream...
 • Apply it to nearest neighbor
• Conclusion
Motivation

• Supervised learning has already shown some promising results...
• with EXPENSIVE labels!
Approach: Make use of Spatial Context

Source: C. Doersch at ICCV 2015
Experiments

• Low-level feature visualization
 • AlexNet
 • Our approach
 • Noroozi and Favaro
 • Wang and Gupta
Compare the filters after Conv1

- **AlexNet trained on ImageNet**
 - Large-scale dataset
 - With labels
- **Interpret the filters:**
 - Nice and smooth
 - No noisy patterns
 - 2 separate streams of processing
 - High-frequency grayscale features
 - Low-frequency color features

Compare the filters after Conv1

- **Our unsupervised approach**
 - Pre-trained on ImageNet
 - **Without labels**
- **Preprocessing with projection:**
 - Shift green and magenta towards gray
- **Interpret the filters**
 - Obviously not that good...
 - Noisy patterns exist
 - Due to the projection, some color features are lost

Compare the filters after Conv1

• **Our unsupervised approach**
 • Pre-trained on ImageNet
 • *Without labels*

• Preprocessing with **color-dropping**:
 • Randomly replace 2 of the 3 color channels with Gaussian noise.

• Interpret the filters
 • Almost no color features
 • More noisy patterns

• ? Somehow it outperforms projection in object detection

Compare the filters after Conv1

- Our unsupervised approach
 - Pre-trained on ImageNet
 - Without labels

- **VGG-style network**: high-capacity model (16-layer)

- Interpret the filters
 - Kernel size is 3 (very small)
 - Coarse grained result
Compare with other models

- Instead of just playing with 2 adjacent patches...
Solving Jigsaw Puzzles

• 2 stacks -> 9 stacks

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles M. Noroozi and P. Favaro
Filters after Conv1 by the “Jigsaw” approach

- Unsupervised learning
- Trained on ImageNet
- Compared with Doersch’s approach, filters are more smooth with less noisy patterns
Results from other unsupervised methods

• No ImageNet, just 100K unlabeled videos and the VOC 2012 dataset.
• Leverage the fact visual tracking provides the supervision.
• Trained with RGB images

Experiments

• Low-level feature visualization
 • AlexNet
 • Our approach
 • Noroozi and Favaro
 • Wang and Gupta

• Have a deep dream...
Going Deeper into Neural Network

• We understand little of why certain models work and others don’t.
• We want to understand what exactly goes on at each layer.
• To visualize this procedure:
 • Turn the network upside down and ask it to enhance an input image in such way as to elicit a particular interpretation.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Going Deeper into Neural Network (cont)

- Interesting examples:

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Going Deeper into Neural Network (cont)

- Enhance the learning result:
 - Feed in an arbitrary image
 - Whatever you see there, just show me more!

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
What does the network see:

• Original image:
Supervised AlexNet vs. Unsupervised VGG(ours)

- conv1 vs. conv1_1

Most on color contrast and the contour

More “fragmented” on edges
Supervised AlexNet vs. Unsupervised VGG(ours)

- conv2 vs. conv2_1

Compared to conv1, this is obviously more “fine-grained”, but still on gradient, as I understand...

Compared to the nice tiny fragments on conv1, this is more “chunked” due to more features focus on the relative position for PATCHES.
Supervised AlexNet vs. Unsupervised VGG(ours)

- conv3 vs. conv3_1

More sophisticated features in image, start to showing some contours indicated by the features.

It seems like to be on the opposite direction... Coarser-grained and the image seems to be divided into tiny patches. We can actually tell some patterns here (like the cloud and sky)
Supervised AlexNet vs. Unsupervised VGG(ours)

- **conv4 vs. conv4_1**

Some objects start to showing up in the image. Features start to “converge”
Supervised AlexNet vs. Unsupervised VGG(ours)

• conv5 vs. conv5_1

This is how the machine interpret image...

Although starting late, the final results are quite similar to those of the supervised approach.
Deeper Inception

• GoogleNet
GoogleNet Layer by Layer

As you go deeper to the network.....
Experiments

• Low-level feature visualization
 • AlexNet
 • Our approach
 • Noroozi and Favaro
 • Wang and Gupta

• Have a deep dream...

• How well can the features do? – nearest neighbor
Results from the paper

<table>
<thead>
<tr>
<th>Input</th>
<th>Random Initialization</th>
<th>ImageNet AlexNet</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The semantic meaning makes this approach different

Having a tire on the bonnet forms a very strange layout, different from normal car image.

AlexNet: More on the image structure, like the round structure of the light and tire

Our approach: It somehow get some “semantic” sense: a tire near the car
The semantic meaning makes this approach different

Some animal’s leg near a ladder structure.

AlexNet: All the results do not make any sense due to there is no salient feature for the query patch.

Our approach: The first result is very similar to the query patch. A “leg” (maybe just some random white bar) and a “ladder” (although it’s just weeds forms a ladder shape)
The semantic meaning makes this approach different

A man near a street lights.

AlexNet: The first result shows a very similar street light, all other results are not quite relevant

Our approach: The first result shows exactly the same thing. Other results show a relative position of a human face and other objects, more or less.
Beyond semantics

• Should this be recognized as a car or teeth?
Beyond semantics

- Supervised AlexNet vs. Unsupervised VGG

Distance:
Supervised Model: 0.6221
Our Approach: 0.4360

Distance:
Supervised Model: 0.9296
Our Approach: 0.3306

Supervised model thinks it more of a car meanwhile our unsupervised approach thinks it more of teeth.
Supervised model more on geometry, shapes; our approach more on the contents.
Conclusion

• Show me what you have learned
 • Low-level feature visualization

• How to understand what you have learned
 • Amplify the features obtained by the network at specific layer

• How can that help us
 • Show the features’ “high-level” performance.
• Q&A