WHERE ARE THEY LOOKING?

Adria recasens, MIT Presenter: Dongguang You

RELATED WORK

- ► The Secrets of Salient Object Segmentation
 - ► free-view saliency

for gaze saliency, people may need to gaze on objects that are not visually salient to perform a task

- ► Learning to Predict Gaze in Egocentric Video
 - ► gaze saliency (gaze following)

THIRD PERSON VIEWPOINT

input

This illustrates how free-view saliency differs from gaze saliency.

Not only it doesn't consider gaze direction, but also it highlights some wrong objects, such as mouse with red light in the lower right image. People performing task in the picture may focus on objects that are not salient by free view free-view saliency

gaze saliency

difference?

PROBLEM DEFINITION

- ► Predicting gaze saliency from a <u>3rd person viewpont</u>
- ► Where are they looking at?

- ► Assumptions:
 - ► 2-D head positions are given
 - ► people are looking at objects inside the image

APPLICATIONS

Behavior understanding

APPLICATIONS

- Behavior understanding
- Social situation understanding
 - do people know each other?

APPLICATIONS

- Behavior understanding
- Social situation understanding
 - > do people know each other?
 - ► are people collaborating on the same task?

DIFFICULTY

CONTRIBUTION OF THIS WORK

► Solve gaze following in 3rd person view, instead of ego-centric

Predict exact gaze location rather than just direction

► Do not require 3D location info of people in the scene

TEST DATA EXAMPLES & STATS

(a) Example test images and annotations

(b) Test set statistics

APPROACH

How do human predict where a person in a picture is looking at?

human first estimate the possible gaze directions based on <u>head pose</u>, then find <u>the most salient objects</u> in those directions

APPROACH

Saliency Map

Gaze direction map(Gaze mask)

How does it force Saliency Pathway and Gaze Pathway to learn the saliency map and gaze mask respectively?

SALIENCY PATHWAY

GAZE PATHWAY

GAZE PATHWAY

GAZE PATHWAY

Combine the saliency map with the gaze mask

MULTIMODAL PREDICTION WITH SHIF

They treated it as a multimodal classification problem instead of regression problem, because there are ambiguities in gaze location, and regression would just take the middle

The softmax loss penalizes all wrong grids uniformly, but we want it to penalize less on grids closer to the answer, so we compute loss on all shifted grids and take an average.

In their model they used shifted grids with size 5×5

.

QUANTITATIVE RESULT

Recall that there are ten ground-truth gaze for each person in test images

AUC: rank the grid by their softmax prob and draw the ROC curve Dist: distance to the average groundtruth Min Dist: distance to closest groundtruth

Ang: angular distance between prediction and average ground-truth

Center: The prediction is always the center of the image.

Fixed bias: The prediction is given by the average of fixations from the training set for heads in similar locations as the test image.

Judd[11]: We use a state-of-the-art free-viewing saliency model [11] as a predictor of gaze

		Min	
AUC	Dist.	Dist.	Ang
0.878	0.190	0.113	24°
0.788	0.268	0.186	40°
0.758	0.276	0.193	43°
0.711	0.337	0.250	54°
	0.306	0.219	48°
1. free-viewing saliency is different from gaze fixation. Also, free-viewing		0.230	49°
Sidel yaze	0.484	0.391	69°
	0.096	0.040	11°
	aluation		
	AUC 0.878 0.788 0.758 0.758 0.7511	AUCDist.0.8780.1900.7880.2680.7580.2760.7110.3370.3060.3130.4840.096aluation	AUC Dist. Dist. 0.878 0.190 0.113 0.788 0.268 0.186 0.758 0.276 0.193 0.758 0.276 0.193 0.711 0.337 0.250 // is different from ree-viewing sider gaze 0.306 0.219 0.484 0.391 0.096 0.040 aluation aluation 0.040 0.040

. . .

SVM BASELINE

QUANTITATIVE RESULT

.

. . .

			Min	
Model	AUC	Dist.	Dist.	Ang.
Our	0.878	0.190	0.113	24 °
SVM+shift grid	0.788	0.268	0.186	40°
SVM+one grid	0.758	0.276	0.193	43°
Judd [11]	0.711	0.337	0.250	54°
Fixed Comparisons:		0.306	0.219	48°
Cente 2. The model outperform	ns the SVM +	0.313	0.230	49°
Rand learned weight in salience the extra fully connected	shift grid baseline, SVM didn't have the learned weight in saliency pathway or the extra fully connected layers in gaze pathway. It also doesn't include the element wise multiplication. Therefore this decrease in performance suggests		0.391	69°
One h pathway. It also doesn't i element wise multiplicati			0.040	11°
one or more of these cor play an important role. L show that the element w multiplication is actually important	nponents may ater we will ise not that	aluation		

3. Shifted grid improved the classification performance by a small margin

ABLATION STUDY

			Min			
Model	AUC	Dist.	Dist.	Ang.		
No image	0.821	0.221	0.142	27°		
No position	0.837	0.238	0.158	32°		
No head	0.822	0.264	0.179	41°		
No eltwise	0.876	0.193	0.117	25°		
$5 imes 5~{ m grid}$	0.839	0.245	0.164	36°		
10×10 grid	0.873	0.218	0.138	30°		
L2 loss	0.768	0.245	0.169	34°		
Our full	0.878	0.190	0.113	$\left(24^{\circ}\right)$		
(b) Model Diagnostics						

1. Although the role of element wise multiplication All three input are important for this network. However, the full image doesn't affect the angular distance that much, which makes sense because the angular distance only depends on the correctness of gaze direction.

2. Elementwise multiplication of saliency map and gaze mask doesn't help that much

3. Their full model uses shifted grids with size 5 x 5. As can be seen, shifted grids did improve all measures by a large margin

4. The prediction of regression with L2 loss is much less accurate than classification result

QUALITATIV

The model is able to find both reasonable gaze directions as well as salient objects on those directions

This proves that gaze mask is useful because the model is able to predict different gaze location for different people in the same picture

The first picture in the second row:

Figure 5: **Qualitative results:** We show several examples of successes and failures of our model. The red lines indicate **ground truth gaze**, and the yellow, our **predicted gaze**.

QUALITATIVE RESULT2

RECALL THAT:

Weighted sum of 256 feature maps. Each feature map captures some object patterns. Weights are learned such that objects people usually look at have higher(positive) weights.

QUALITATIVE RESULT3

Top activation image regions for 8 conv5 neurons in Saliency pathway

EVALUATION

Strength:

- Combine gaze direction and visual saliency
- ► Good performance
- ► Use head position instead of face position
 - ► can handle the case where only the back is seen

Weakness:

- Ignoring depth -> unreasonable prediction
- Cross-entropy loss VS shifted grids?

DEMO

http://gazefollow.csail.mit.edu/demo.html

- Photo with people appearing in their back
 - http://jessgibbsphotography.com/wp-content/uploads/ 2013/01/ crowds_of_people_take_photos_of_flag_ceremony_outside_ town_hall.jpg

- > Photo where people are staring at objects outside the image
 - http://www.celwalls.com/wallpapers/large/7525.jpg