Network Dissection: Quantifying Interpretability of Deep Visual Representations

By David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba

CS 381V Thomas Crosley and Wonjoon Goo

Detectors

Network Dissection Quantifying the interpretability of units through segmentation

Credit: slide from the original paper

Unit Distributions

- Compute internal activations for entire dataset
- Gather distribution for each unit across dataset

- Compute T_k such that $P(a_k > T_k) = 0.005$
- T_k is considered the top-quantile
- Detected regions at test time are those with a_k > T_k

- Score of each unit is its IoU with the label
- Detectors are selected with IoU above a threshold
- Threshold is $U_{k,c} > 0.04$.

 $\frac{\sum |M_k(\mathbf{x}) \cap L_c(\mathbf{x})|}{\sum |M_k(\mathbf{x}) \cup L_c(\mathbf{x})|}$ $IoU_{k,c}$

Test Data

Compute activation map a_k for all k neurons in the network

Scaling Up

- Scale each unit's activation up to the original image size
- Call this the mask-resolution S_{κ}
- Use bi-linear interpolation

Thresholding

99	100	100	70	68	1	1	1	0	
99	100	101	67	65	1	1	1	0	
98	102	100	98	60	T _k =95 1	1	1	1	
82	97	99	97	52	0	1	1	1	13
75	70	72	70	45	0	0	0	0	

 S_{κ}

 M_{K}

• Now make the binary segmentation mask M_k

•
$$M_k = S_K > T_K$$

Experiment: Detector Robustness

- Interest in adversarial examples
- Invariance to noise
- Composition by parts or statistics

Noisy Images

+ Unif[0, 1]

5 * Unif[0, 1] +

+ 100 * Unif[0, 1]

Rotated Images

Original

10 degrees

90 degrees

45 degrees

conv3

conv4

conv5

Rearranged Images

Rearranged Images

Rearranged Images

Axis-Aligned Interpretability

- Hypothesis 1:
 - A linear combination of high level units serves just same or better
 - No specialized interpretation for each unit
- Hypothesis 2: (the authors' argument)
 - A linear combination will degrade the interpretability
 - Each unit serves for unique concept

How similar is the way CNN learns to human?

Axis-Aligned Interpretability Result from the Authors

- Problems
 - It depends on a rotation matrix used for test
 - A 90 degree rotation between two axis, does not affect the number of unique detectors
 - The test should be done multiple times and report the means and stds.

Experiment: Axis-Aligned Interpretability

- Principle Component Analysis (PCA)
 - Find orthonormal vectors explaining samples the most
 - The projections to the vector u_1 have higher variance
- Argument: a unit itself can explain a concept
 - Projections to unit vectors should have higher variance
 - Principal axis (Loading) from PCA should be similar to one of the unit vectors

Our method

- 1. Calculate the mean and std. of each unit activation
- 2. Grab activations for a specific concept
- 3. Subtract mean and std from activations
- 4. Perform SVD
- 5. Print Loading

• Optimize target:

 $\max_{u:\|u\|=1} \frac{1}{m} \sum_{i=1}^{m} (x^{(i)T}u)^2 \implies \max_{u:\|u\|=1} \frac{1}{m} \sum_{i=1}^{m} (x^{(i)T}u)^T (x^{(i)T}u)$ $\implies \max_{u:\|u\|=1} \frac{1}{m} \sum_{i=1}^{m} (u^T x^{(i)}) (x^{(i)T}u)$ $\implies \max_{u:\|u\|=1} \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)T}u$ $\implies \max_{u:\|u\|=1} u^T (\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)T})u$ $\implies \max_{u:\|u\|=1} u^T \Sigma u, \quad where \quad \Sigma = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)T}$

• With Lagrange multiplier:

$$\Rightarrow \max u^T \Sigma u \quad subject \quad u^T u = 1 (Because ||u|| = 1) \Rightarrow \mathcal{L}(u, \lambda) = u^T \Sigma u + \lambda (u^T u - 1) \Rightarrow \frac{\partial \mathcal{L}(u, \lambda)}{\partial u} = \frac{\partial (u^T \Sigma u + \lambda u^T u)}{\partial u} = \frac{\partial (u^T \Sigma u)}{\partial u} + \frac{\partial (\lambda u^T u)}{\partial u} = 2\Sigma u + 2\lambda u \stackrel{Set}{=} 0$$

The eigenvector for the highest eigenvalue becomes principal axis (loading)

From Cheng Li, Bingyu Wang Notes

- Unit 502 stands high; concept bird is aligned to the unit
- Does Unit 502 only serve for concept Bird?
 - Yes
 - It does not stand for other concepts except bird
- Support Hypothesis 2

- No units stands out for concept train
 - Linear combination of them have better interpretability
 - Support Hypothesis 1

- No units stands out for concept train Some objects with circle and trestle?
 - Linear combination of them have interpretability

- No units stands out for concept train The sequence of square boxes?
 - Linear combination of them have interpretability

- No units stands out for concept train
 - Linear combination of them have interpretability

Conclusion...?

- Actually, it seems mixed!
- CNN learns some human concepts naturally, but not always
 It might highly correlated with the label we give

- What if we regularize the network to encourage its interpretability?
 - <u>Taxonomy-Regularized Semantic Deep Convolutional Neural Networks</u>, Wonjoon Goo, Juyong Kim, Gunhee Kim, and Sung Ju Hwang, ECCV 2016

Thanks! Any questions?