Gaze Embeddings for Zero-Shot Image Classification

Nour Karessli Zeynep Akata Bernt Schiele Andreas Bulling

Presentation by Hsin-Ping Huang and Shubham Sharma

Introduction

- Standard image classification models fail with the lack of labels.
- Zero-Shot Learning is a challenging task. Side information, e.g. attributes, is required.
- Several sources of side information exists: Attributes, detailed descriptions or gaze.
- Use gaze as the side information in this paper.

ZERO-SHOT LEARNING

 Given training data and a disjoint test set, perform tasks such as object classification by mapping a function between the training data and test set.

GAZE EMBEDDINGS

Gaze Features

Gaze Histogram

GAZE EMBEDDINGS

Gaze Features with Grid

Gaze Features with Sequence

RESULTS OF THE PAPER

CUB-VW

AVG

EARLY

LATE

Random points	39.5
Bubbles [Deng et al. CVPR'13]	43.2
Bag of Words from Wikipedia	55.2
Attributes	72.9
Gaze	73.9
Attributes + Gaze	78.2

EXPERIMENTS

Dataset: CUB-VW

- 14 classes of Caltech-UCSD Birds 200-2010
- 10 different splits: 8/3/3 for train, validation and test classes
- Average per-class top-1 accuracy

7 classes of Vireos

7 classes of Woodpeckers

Gaze Features with Sequence

GFS of One Observer

GFS EARLY

GFS AVG Observer 1 Observer 5

- Gazes in the beginning contain less information because the observers just start viewing the image.
- Gazes in the end contain less information because the observers are tired or have done the observation.
- Ignore gazes in the beginning and the end.

Gaze Features with Sequence (GFS) of One Observer

- Ignoring gazes in the beginning yields better accuracy.
- Especially for AVG, the accuracy improves 6% when ignoring 2 gaze points.

- Gazes with shorter duration contain less information because those position are less salient in the image.
- Ignore gazes with shorter duration.

Gaze Features with Sequence (GFS) of One Observer

- Ignoring gazes with shorter duration yields better accuracy.
- Especially for EARLY, the accuracy improves 6% when ignoring 5 gaze points.

- Gazes close to the center contain less information because the observers have a tendency to look at the center.
- Ignore gazes close to the center of the image.

- Ignoring gazes **close to the center** yields better accuracy.
- Especially for EARLY, the accuracy improves 5% when ignoring 6 gaze points.

- Not only the absolute positions, but also the offsets and distance between the mean gaze are informative.
 - Gazes have personal bias, each person have a different mean gaze.
 - The distribution of the gazes is important.
- Add the offsets and distance between the mean gaze as features.

• Add the offsets and distance between the mean gaze as features.

Gaze Features with Sequence (GFS) of One Observer

• Adding *the offsets and distance between the mean gaze* yields better accuracy.

- Not only the angles, but also the offsets and distance between two subsequent gazes are informative.
 - The saccade information is important.
- Add the offsets and distance between the subsequent gaze as features.

• Add the offsets and distance between the subsequent gaze as features.

Gaze Features with Sequence (GFS) of One Observer

 Adding the offsets and distance between the subsequent gaze yields better accuracy.

 Adding the offsets and distance between the mean gaze and the subsequent gaze yields the best accuracy.

• Use different zero-shot learning models.

Existing ZSL models can be grouped into 4:
1.Learning Linear Compatibility: ALE, DEVISE, SJE
2.Learning Nonlinear Compatibility: LATEM, CMT
3.Learning Intermediate Attribute Classifiers: DAP
4.Hybrid Models: SSE, CONSE, SYNC

Learning Linear Compatibility

Use bilinear compatibility function to associate visual and auxiliary information

 $F(x, y; W) = \theta(x)^T W \phi(y)$

SJE: Structured Joint Embedding

Gives full weight to the top of the ranked list

 $[\max_{y \in \mathcal{Y}^{tr}} (\Delta(y_n, y) + F(x_n, y; W)) - F(x_n, y_n; W)]_+$

[Akata et al. CVPR'15 & Reed et al. CVPR'16]

Hybrid Models

Express images and semantic class embeddings as a mixture of seen class proportions

CONSE: Convex Combination of Semantic Embeddings

Learns probability of a training image belonging to a class

Uses combination of semantic embeddings to classify

$$f(x,t) = \underset{y \in \mathcal{Y}^{tr}}{\operatorname{argmax}} p_{tr}(y|x)$$
$$\frac{1}{Z} \sum_{i=1}^{T} p_{tr}(f(x,t)|x).s(f(x,t))$$

[Norouzi et al. ICLR'14]

SSE: Semantic Similarity Embedding

Leverages similar class relationships

Maps class and image into a common space

 $\operatorname*{argmax}_{u \in \mathcal{U}} \pi(\theta(x))^T \psi(\phi(y_u))$

[Zhang et al. CVPR'16]

SYNC: Synthesized Classifiers

Maps the embedding space to a model space

Uses combination of phantom class classifiers to classify

$$\min_{w_c, v_r} \|w_c - \sum_{r=1}^n s_{cr} v_r\|_2^2.$$

[Changpinyo et al. CVPR'16]

Gazes		Attributes		
Method	Accuracy (%)		Method	Accuracy (%)
SJE	62.9		SJE	53.9
SSE	60.6		SSE	43.9
CONSE	63.7		CONSE	34.3
SYNC	62.2		SYNC	55.6

[Xian et al. CVPR'17]

• Using *different zero-shot learning models* yields similar accuracy for gaze embeddings.

• Check the contribution of every participant to check if they contain complimentary information.

Failure Cases

• Birds are small or not salient in the pictures

• Birds have very different poses

CONCLUSIONS

- Using gaze embeddings for object recognition can be improved by processing the gaze data.
- The zero-shot model used in the paper works better when we think about either gaze or attributes.
- Not all participants necessarily contribute complimentary information.