An Egocentric Perspective on Active Vision and Visual Object Learning in Toddlers

S. Bambach, D. Crandall, L. Smith, C. Yu. ICDL 2017

Experiment presenters: Arjun, Ginevra

Their Experiments

toddler view

Image source: paper

Their Experiments

Authors could not control training set

Image source: paper

Our Experiments

- We generate images where
 - Labeled object occupies fixed percentage of view
 - Background objects do not move

Our Experiments

- Simulate toddler bringing object to face
 - We control scale to measure its effect on testing accuracy

Our Dataset

- 5 classes, 3633 images
- Collages
 - Construct 'scenes of toys' using Caltech-256
 - 1 positive image amongst many negatives
 - Simulate toddler perspective

Image source: Caltech 256 database

Scene Generation

• Scene dim: 224 x 224

- Scale largest image dim to 70
- Rotate randomly from -15° to 15°
- 10 negatives
 - Select uniformly from Caltech-256 negatives
 - Placed randomly in within scene boundary
- 1 positive
 - Scale 0 (1x), 1 (1.5x), 2 (2x), 3 (3x)
 - Place randomly within scene boundary (at scale 1)
- 2 scenes per training instance

VGG 16

Image source, and source of some code used in the experiments: https://www.cs.toronto.edu/~frossard/post/vgg16/

VGG 16 for 5 classes

Image source: https://www.cs.toronto.edu/~frossard/post/vgg16/, modified by us

Experiment Setup

- Experiment 1
 - Train on different scales, test on clean image
- Experiment 2
 - Train on different scales and clean, test on different scales

Experiment Setup

- Experiment 1
 - Train on different scales, test on clean image
- Experiment 2
 - Train on different scales and clean, test on different scales

Experiment 1 - objective

- Test effect of 'bringing object to face' for isolated classification
- Questions to consider
 - Effect of viewing at multiple scales?
 - Single ideal scale or result of multiple scales?

Train0

Image source: collages we made from Caltech 256 database

Train2

Image source: collages we made from Caltech 256 database

Image source: collages we made from Caltech 256 database

Train3only

Correct number of epochs to compensate for more training examples

Test

Training on larger scale images only yields to best test accuracy.

 Images misclassified when network trained in low scales benefit from training in higher scales

Misclassified after train0, train1, train2

Correctly classified after train3 and train3only

(Category: bag)

 Images misclassified when network trained in low scales benefit from training in higher scales

Misclassified after train0, train1, train2, train3

Correctly classified only after train3only

(Category: plane)

• Images misclassified after train3only were misclassified after all other trainings

Plane

Plane

Experiment 1 - conclusions

- Toddler's data gives better training because object is closer, not because it is 'brought to face'
- Significant jump in accuracy if object occupies
 >30% of view in training
- Training images where object occupies <30% of view do more harm than good

Image source: collages we made from Caltech 256 database

Experiment Setup

- Experiment 1
 - Train on different scales, test on clean image
- Experiment 2
 - Train on different scales and clean, test on different scales

Experiment 2 - objective

- Effect of 'bringing to face' for object-in-scene detection
- Questions to consider
 - Does 'cleaning' the scene decrease detection in cluttered environment?

Image source: https://en.wiktionary.org/wiki/question_mark

Train0

Train2

Image source: collages we made from Caltech 256 database

Image source: collages we made from Caltech 256 database

TrainClean

Correct number of epochs to compensate for more training examples

Test0

Test1only

Test2only

Test3only

Training by 'bringing to face' yields to best accuracy

Experiment 2 - conclusions

- Can learn more from different scales than from clean, as long as scale 3 is included
- Learning from different scales gives better accuracies when tested on lower scales
- Test on clean much better than test on scales

Image source: collages we made from Caltech 256 database

Conclusions

- With our controlled datasets, we could verify that network learns better from larger scale
- Testing needs to be done on clean images, no matter which scales were used in training
- Training on scales >30% gives more robustness when testing on all scales
- Training on scales <30% hurts accuracy