Learning Deep Structure-Preserving Image-Text Embeddings

Liwei Wang Yin Li Svetlana Lazebnik

Presented by: Arjun Karpur

Outline

- Problem Statement
- Approach
- Evaluation
- Conclusion

- Given collection of images, sentences
- Perform retrieval tasks...
 - Image-to-text
 - Text-to-image

- Given collection of images, sentences
- Perform retrieval tasks...
 - Image-to-text
 - Text-to-image
- Useful for...
 - Image captioning
 - Visual question answering
 - **etc...**

- Given collection of images, sentences
- Perform retrieval tasks...
 - Image-to-text
 - Text-to-image
- Useful for...
 - Image captioning
 - Visual question answering
 - **etc**...
- Utilize 'joint embedding' to compare differing modalities

Joint Embedding

The dog plays in the park.

The student reads in the library

Embedding space

Joint Embedding

The dog plays in the park.

The student reads in the library

Embedding space

Joint Embedding

Embedding space

- Multi-view shallow network to project existing representations into embedding space
 - Any existing handcrafted or learned
 - One branch for each data mode

- Multi-view shallow network to project existing representations into embedding space
 - Any existing handcrafted or learned
 - One branch for each data mode
- Nonlinearities allow modeling of more complex functions

- Multi-view shallow network to project existing representations into embedding space
 - Any existing handcrafted or learned
 - One branch for each data mode
- Nonlinearities allow modeling of more complex functions
- Improve accuracy via L2 normalization before embedding loss

Training Objective

- Loss function comprising of...
 - a. **Bi-directional ranking constraints** encourage short distances between an image/sentence and its positive matches and large distances between image/sentence and negatives
 - Cross-view matching

Training Objective

- Loss function comprising of...
 - a. **Bi-directional ranking constraints** encourage short distances between an image/sentence and its positive matches and large distances between image/sentence and negatives
 - Cross-view matching
 - b. **Structure-preserving constraints** images (and sentences) with identical semantic meanings are separated from others by some margin
 - Within-view matching

Bi-directional Ranking Constraints

• Given a training image x_i , let Y_i^- and Y_i^+ represent its matching and non-matching sentences

Bi-directional Ranking Constraints

- Given a training image x_i , let Y_i^- and Y_i^+ represent its matching and non-matching sentences
- Want distance between x_i and $\forall y_j \in Y_i^+$ to be less than distance between x_i and $\forall y_k \in Y_i^-$ by some margin m...

Bi-directional Ranking Constraints

- Given a training image x_i , let Y_i^- and Y_i^+ represent its matching and non-matching sentences
- Want distance between x_i and $\forall y_j \in Y_i^+$ to be less than distance between x_i and $\forall y_k \in Y_i^-$ by some margin m...

$$d(x_i, y_j) + m < d(x_i, y_k) \quad \forall y_j \in Y_i^+, \forall y_k \in Y_i^-$$

Structure-preserving Constraints

• Neighborhood $N(x_i)$ of images (or sentences - same modality) with shared meaning

Structure-preserving Constraints

- Neighborhood $N(x_i)$ of images (or sentences - same modality) with shared meaning
- Enforce margin between $N(x_i)$ and points outside

Structure-preserving Constraints

- Neighborhood $N(x_i)$ of images (or sentences - same modality) with shared meaning
- Enforce margin between $N(x_i)$ and points outside
- Remove ambiguity for a query image/sentence

Loss Function

$$\begin{split} L(X,Y) &= \sum_{i,j,k} \max[0, m + d(x_i, y_j) - d(x_i, y_k)] \\ &+ \lambda_1 \sum_{i',j',k'} \max[0, m + d(x_{j'}, y_{i'}) - d(x_{k'}, y_{i'})] \\ &+ \lambda_2 \sum_{i,j,k} \max[0, m + d(x_i, x_j) - d(x_i, x_k)] \\ &+ \lambda_3 \sum_{i',j',k'} \max[0, m + d(y_{i'}, y_{j'}) - d(y_{i'}, y_{k'})], \end{split}$$
 Within-view

Use 'triplet sampling' to efficiently train, given nearly infinite triplets

Evaluation

Evaluation

- Evaluate image-to-sentence and sentence-to-image retrieval
- Datasets
 - Flickr30K 31783 images, each described by 5 sentences
 - MSCOCO 123000 images, each described by 5 sentences
- Perform Recall@K (K = 1,5,10) for 1000 test images and corresponding sentences

Datasets - Flickr30k

IMAGE 4467543993

SENTENCES

1. Woman in a black jacket with silver glasses smiles while on a subway.

- 2. 2 guys and a woman riding on a subway watching something funny.
- 3. A sitting woman is laughing beside a man in a blue jacket.
- **4.** A man and a woman riding a train .
- Three people seated on a subway.

IMAGE 317488612

SENTENCES

- 1. A white dog is running through the snow.
- 2. A dog running through deep snow pack .
- **3.** A dog is playing in the deep snow .
- 4. A dog runs through the deep snow .
- 5. White dog running through snow

	Methods on Flickr30K	Image-to-sentence			Sentence-to-image		
		R@1	R@5	R@10	R@1	R@5	R@10
(a) State of the art	Deep CCA [33]	27.9	56.9	68.2	26.8	52.9	66.9
	mCNN(ensemble) [29]	33.6	64.1	74.9	26.2	56.3	69.6
	m-RNN-vgg [31]	35.4	63.8	73.7	22.8	50.7	63.1
	Mean vector [26]	24.8	52.5	64.3	20.5	46.3	59.3
	CCA (FV HGLMM) [26]	34.4	61.0	72.3	24.4	52.1	65.6
	CCA (FV GMM+HGLMM) [26]	35.0	62.0	73.8	25.0	52.7	66.0
	CCA (FV HGLMM) [37]	36.5	62.2	73.3	24.7	53.4	66.8
(b) Fisher vector	Linear + one-directional	33.5	61.7	73.6	21.0	47.4	60.5
	Linear + bi-directional	34.6	64.3	74.9	24.2	52.0	64.2
	Linear + bi-directional + structure	35.2	66.8	76.2	25.6	54.8	66.5
	Nonlinear + one-directional	37.5	65.6	76.9	22.4	50.9	63.3
	Nonlinear + bi-directional	39.3	68.0	78.3	28.1	59.2	71.2
	Nonlinear + bi-directional + structure	40.3	68.9	79.9	29.7	60.1	72.1
(c) Mean vector	Nonlinear + bi-directional	33.5	60.2	71.9	22.8	52.5	65.0
	Nonlinear + bi-directional + structure	35.7	62.9	74.4	25.1	53.9	66.5
(d) tf-idf	Nonlinear + bi-directional	38.7	66.6	76.9	27.6	57.0	69.0
	Nonlinear + bi-directional + structure	40.1	67.6	78.2	28.1	58.5	69.8

	Methods on Flickr30K	Image-to-sentence			Sentence-to-image		
		R@1	R@5	R@10	R@1	R@5	R@10
(a) State of the art	Deep CCA [33]	27.9	56.9	68.2	26.8	52.9	66.9
	mCNN(ensemble) [29]	33.6	64.1	74.9	26.2	56.3	69.6
	m-RNN-vgg [31]	35.4	63.8	73.7	22.8	50.7	63.1
	Mean vector [26]	24.8	52.5	64.3	20.5	46.3	59.3
	CCA (FV HGLMM) [26]	34.4	61.0	72.3	24.4	52.1	65.6
ł	CCA (FV GMM+HGLMM) [26]	35.0	62.0	73.8	25.0	52.7	66.0
	CCA (FV HGLMM) [37]	36.5	62.2	73.3	24.7	53.4	66.8
(b) Fisher vector	Linear + one-directional	33.5	61.7	73.6	21.0	47.4	60.5
	Linear + bi-directional	34.6	64.3	74.9	24.2	52.0	64.2
	Linear + bi-directional + structure	35.2	66.8	76.2	25.6	54.8	66.5
	Nonlinear + one-directional	37.5	65.6	76.9	22.4	50.9	63.3
	Nonlinear + bi-directional	39.3	68.0	78.3	28.1	59.2	71.2
	Nonlinear + bi-directional + structure	40.3	68.9	79.9	29.7	60.1	72.1
(c) Mean vector	Nonlinear + bi-directional	33.5	60.2	71.9	22.8	52.5	65.0
	Nonlinear + bi-directional + structure	35.7	62.9	74.4	25.1	53.9	66.5
(d) tf-idf	Nonlinear + bi-directional	38.7	66.6	76.9	27.6	57.0	69.0
	Nonlinear + bi-directional + structure	40.1	67.6	78.2	28.1	58.5	69.8

Quantitative Results - Recap

- Using joint-loss, fine-tuning method on top of handcrafted feature outperforms deep methods
- All components of loss function contribute to good results

CCA

CCA

Our method

An Indian woman poses in ornate ceremonial clothing with an elaborate headpiece.

Our method

A person wearing a red and white uniform is racing a motorcycle with the number 58 on it .

Our method

It looks like the clown has fallen off the horse.

Our method

A little girl in a pink jacket and hat is swinging in a harness attached to yellow ropes.

Compared to baselines, achieve high results even without focusing on object detection

Conclusion

Strengths & Weaknesses

- Works with **any pre-existing embedding** (finetune or train from scratch)
- Robust 2-way embedding method
- L2 normalization allows for easy Euclidean distance comparisons

- Hard to find a **single sentence** that describes **multiple images** (or vice versa)
- Only allows for retrieval, not synthesis (image captioning)
- Requires large collection of labeled pairs

Extensions

- Use framework for other data pairs in **different modalities** (audio + video)
- Leverage data pairs that arise naturally in the world for **unsupervised learning**

References

- Wang, Liwei, Yin Li, and Svetlana Lazebnik. "Learning deep structure-preserving image-text embeddings." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. APA
- Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- Various image sources...

Comments + Questions