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● Given collection of images, sentences
● Perform retrieval tasks...

○ Image-to-text
○ Text-to-image

“The quick brown fox jumped 
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Image courtesy of: http://nebraskaris.com/



Problem Statement

● Given collection of images, sentences
● Perform retrieval tasks...

○ Image-to-text
○ Text-to-image

● Useful for…
○ Image captioning
○ Visual question answering
○ etc... “The quick brown fox jumped 

over the lazy dog”

Image courtesy of: http://nebraskaris.com/



Problem Statement

● Given collection of images, sentences
● Perform retrieval tasks...

○ Image-to-text
○ Text-to-image

● Useful for…
○ Image captioning
○ Visual question answering
○ etc...

● Utilize ‘joint embedding’ to compare
differing modalities

“The quick brown fox jumped 
over the lazy dog”

Image courtesy of: http://nebraskaris.com/
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● Multi-view shallow network to project 
existing representations into embedding 
space

○ Any existing handcrafted or learned
○ One branch for each data mode
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Approach

● Multi-view shallow network to project 
existing representations into embedding 
space

○ Any existing handcrafted or learned
○ One branch for each data mode

● Nonlinearities allow modeling of more 
complex functions

● Improve accuracy via L2 normalization 
before embedding loss

Image courtesy of: Wang et. al 2016



● Loss function comprising of…

a. Bi-directional ranking constraints - encourage short distances between an image/sentence 
and its positive matches and large distances between image/sentence and negatives

■ Cross-view matching

Training Objective



● Loss function comprising of…

a. Bi-directional ranking constraints - encourage short distances between an image/sentence 
and its positive matches and large distances between image/sentence and negatives

■ Cross-view matching

b. Structure-preserving constraints - images (and sentences) with identical semantic meanings 
are separated from others by some margin

■ Within-view matching

Training Objective
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Bi-directional Ranking Constraints

● Given a training image      , let       and       represent its matching and 
non-matching sentences

● Want distance between      and                    to be less than distance between 
and                    by some margin      ...

Image courtesy of: FaceNet [Schroff et. al]



● Neighborhood              of images 
(or sentences - same modality) 
with shared meaning
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Structure-preserving Constraints

● Neighborhood              of images 
(or sentences - same modality) 
with shared meaning

● Enforce margin between
and points outside

● Remove ambiguity for a query 
image/sentence

Image courtesy of: Wang et al 2016



Loss Function

Cross-view}

Within-view}
Use ‘triplet sampling’ to efficiently train, given nearly infinite triplets
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Evaluation

● Evaluate image-to-sentence and sentence-to-image retrieval
● Datasets

○ Flickr30K - 31783 images, each described by 5 sentences
○ MSCOCO - 123000 images, each described by 5 sentences

● Perform Recall@K (K = 1,5,10) for 1000 test images and corresponding 
sentences



Datasets - Flickr30k
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Quantitative Results - Recap

● Using joint-loss, fine-tuning method on top of handcrafted feature 
outperforms deep methods

● All components of loss function contribute to good results



 Compared to baselines, achieve high results even without focusing on object 
detection

Image courtesy of: Wang et al 2016



Conclusion



Strengths & Weaknesses

+ -
● Works with any pre-existing 

embedding (finetune or train from 
scratch)

● Robust 2-way embedding method

● L2 normalization allows for easy 
Euclidean distance comparisons

● Hard to find a single sentence that 
describes multiple images (or vice 
versa)

● Only allows for retrieval, not 
synthesis (image captioning)

● Requires large collection of labeled 
pairs



Extensions

● Use framework for other data pairs in 
different modalities (audio + video)

● Leverage data pairs that arise naturally 
in the world for unsupervised learning
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