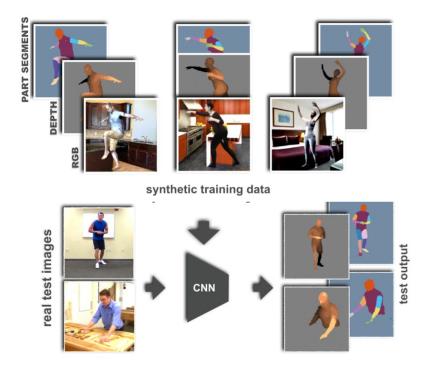
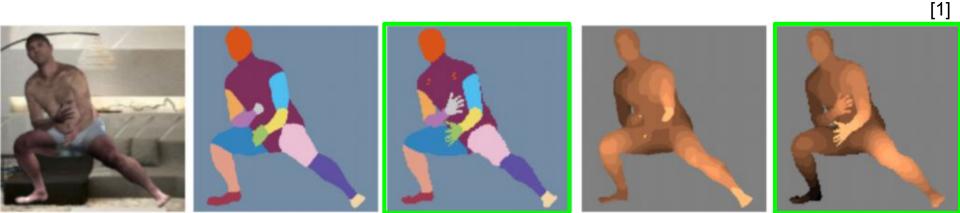
Learning from Synthetic Humans



Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, Cordelia Schmid

Presented by Taylor Kessler Faulkner

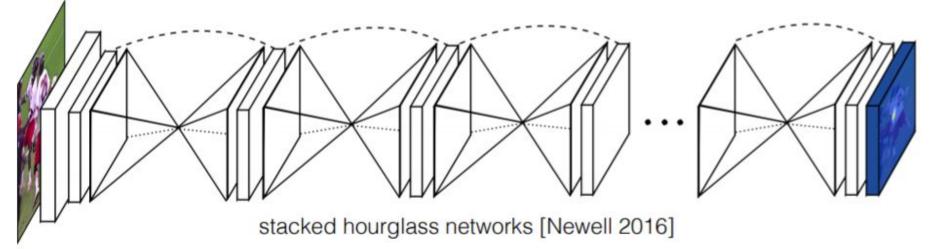

Motivation

- CNNs can effectively learn 2D human poses
- Labeled real human data is expensive and difficult in large amounts
- Goal: create synthetic data that is not hand-annotated

Goals

- Create a realistic synthetic dataset (SURREAL)
- Test whether a CNN can learn from SURREAL
 - Depth
 - Human parts segmentation
- Large synthetic person dataset with depth, segmentation, and ground truth

SURREAL Creation


- Body model: SMPL
- Body shape, texture: CAESAR
- Body pose: CMU MoCap marker data
- Background: LSUN
- Ground truth: Blender
- Random: 3D pose, shape, texture, viewpoint, lighting, background image

SURREAL dataset Synthetic hUmans for REAL tasks

Network

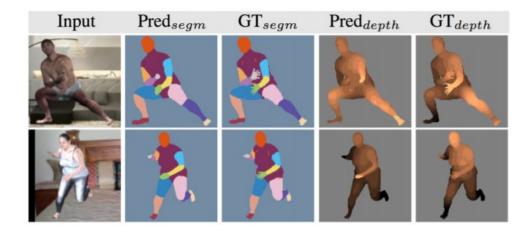
• Adapted from 2D pose estimation

- Models spatial relations at different resolutions [1]
- Uses human body structure to obtain pixel-wise output [1]

Depth and Segmentation

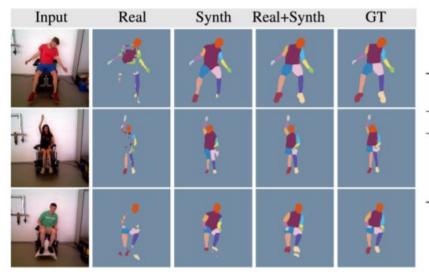
- Pixel-wise classification
- Segmentation: each pixel is classified
 - Head, torso, upper legs, lower legs, upper arms, lower arms, hands, feet, background

[1]

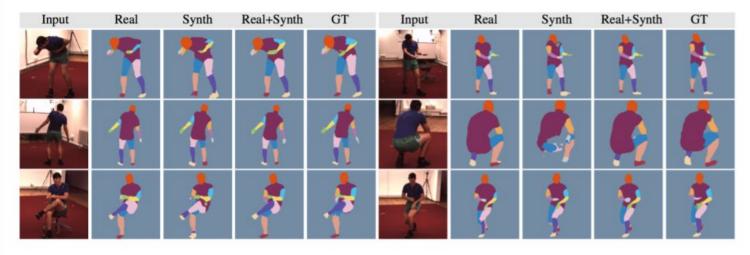

- Depth: Pelvis set as center
 - 9 depth levels in front, 9 levels behind

Experimental Evaluation

- Segmentation evaluation
 - Intersection over union (IOU)
 - Pixel accuracy measures
- Depth estimation evaluation
 - Classification problem, but continuous values
 - Root-mean-squared-error (RMSE) b/w predicted and ground truth depth


Experiments - SURREAL Dataset

Segmen	tation	Depth			
ΙΟυ	69.13 %	RMSE	72.9 mm		
Accuracy	80.61 %	st-RMSE	56.3 mm		

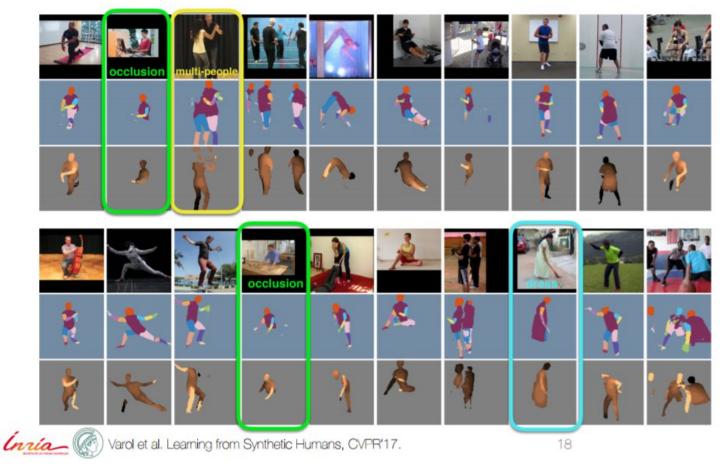

Unclassified Warol et al. Learning from Synthetic Humans, CVPR'17.

Experiments - Freiburg Sitting People Dataset

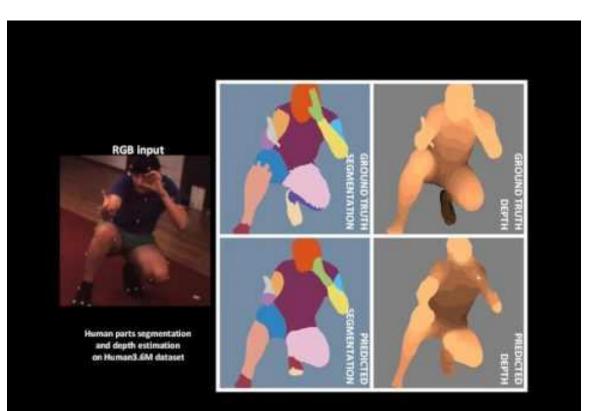
Training data	Head IOU	Torso IOU	Legs _{up} IOU	mean IOU	mean Acc.
Real+Pascal[21]	-	-	-	64.10	81.78
Real	58.44	24.92	30.15	28.77	38.02
Synth	73.20	65.55	39.41	40.10	51.88
Synth+Real	72.88	80.76	65.41	59.58	78.14
Synth+Real+up	85.09	87.91	77.00	68.84	83.37

Experiments - Human3.6M Dataset

	IO	U	Accuracy		
Training data	fg+bg	fg	fg+bg	fg	
Real	49.61	46.32	58.54	55.69	
Synthetic	46.35	42.91	56.51	53.55	
Synthetic+Real	57.07	54.30	67.72	65.53	


Innia Warol et al. Learning from Synthetic Humans, CVPR'17.

Experiments - Human3.6M Dataset


Input	Real	Synth	Real+Synth	GT	Input	Real	Synth	Real+Synth	GT
A	-	-	*	*		ĸ	*	Ŕ	ĸ
R	R		R	2	-		1	1	1
612	Þ) A)^)	A	A)		2	Ż	-	- V
1	Ŕ	Ń	1	1	1. Contraction	X	X	۲	ÿ
	-	Training data	RMSE	st-RMSE	PoseRM	SE st-P	oseRMSE	(mm)	
	_	Real	96.3	75.2	12	2.6	94.5		
		Synthetic	111.6			2.5	131.5		
		Synthetic+Re	al 90.0	67.1	9	2.9	82.8		

Innia Varol et al. Learning from Synthetic Humans, CVPR'17.

Experiments - MPII Human Pose Dataset

Video

[4]

Strengths and Weaknesses

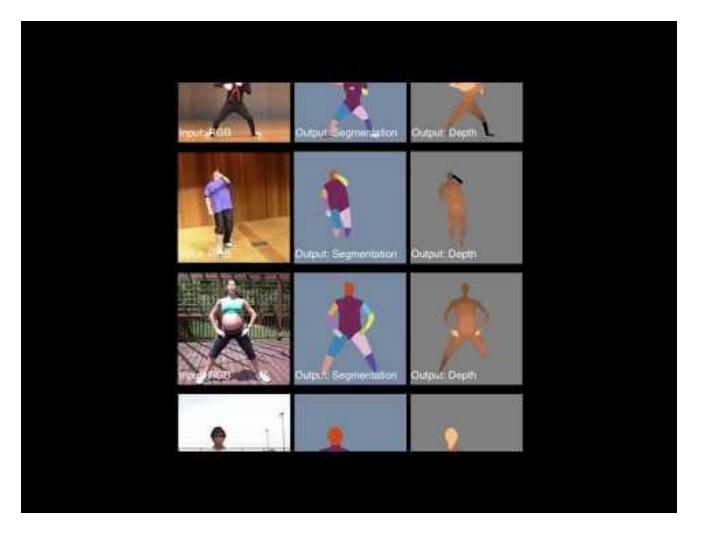
- Easy to create realistic synthetic images
- Provides a good pre-training dataset for real data
- Backgrounds are unrealistic
 - No interaction with lighting
 - Human movement around objects in background is wrong
- Groups of people cause problems, so we can only test on single humans

Extensions

• Addition of occlusions and groups of people in dataset

- Better interactions with background image
 - Also provides occlusion data (objects in background)

Citations


[1] Learning from Synthetic Humans. G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev, C. Schmid. CVPR 2017.

[2] G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev and C. Schmid, "Learning from Synthetic Humans", 2017. http://www.di.ens.fr/willow/research/surreal/varol_cvpr17_presentation.pdf

[3] G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev and C. Schmid, *[CVPR'17] SURREAL dataset - Learning from Synthetic Humans*. 2017.

[4] G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev and C. Schmid, [CVPR'17] SURREAL synthetic training results on Human3.6M. 2017.

[5] G. Varol, J. Romero, X. Martin, N. Mahmood, M. Black, I. Laptev and C. Schmid, [CVPR'17] SURREAL synthetic training results on Youtube Pose

