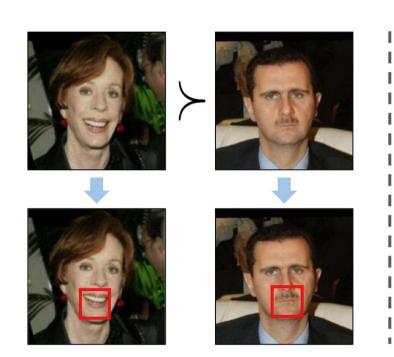
End-to-End Localization and Ranking for Relative Attributes

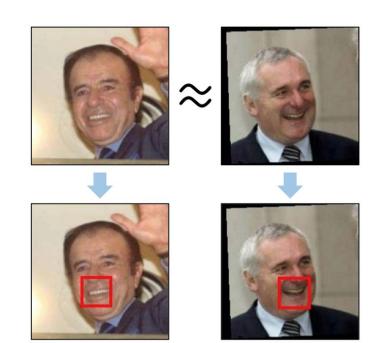
Krishna Kumar Singh and Yong Jae Lee University of California, Davis

Agenda

Brief paper review

Code walk through

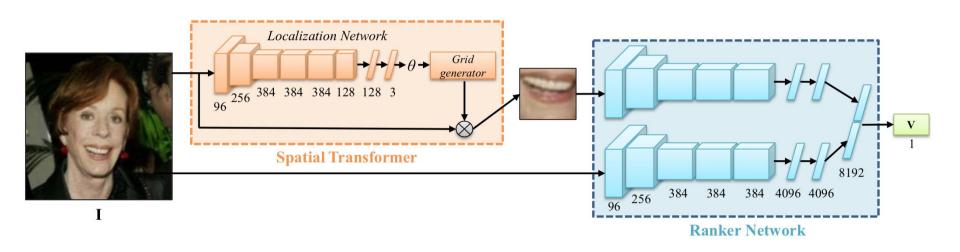

Experiment


Results

Discussion

The Task at Hand

Attribute: Smile


Why is this important?

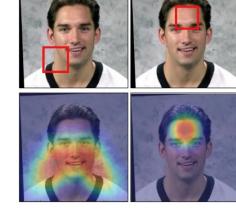
Similar problem in concept to object affordances: we want to define something as the sum of its parts, rather than as a "unique" entity

Prior recognition systems know objects a priori, want to reach zero-shot learning

More fine-grained information than object categories / parts alone

Network Structure

Attribute:
Dark hair


Attribute: Smile

Dark hair

Attribute: Smile

Attribute:

Dark hair

Attribute:

Attribute: Smile

Training epochs

Attribute: Dark hair Attribute:

Smile

Training epochs

Attribute: Dark hair Attribute:

Smile

Training epochs

Attribute: Dark hair Attribute:

Smile

Training epochs

Unique Datasets

Contributions

End-to-end network that simultaneously performs attribute ranking and localization.

Leverages Siamese network for ranking

Spatial transformer localizes relevant image regions

Generalizable; tested on face, shoe, and outdoor datasets

Torch Walkthrough

Experiments

Even though we learn the scale of the STN, we can see that the size of the boxes is almost the same.

The size is of the box is close to $\frac{1}{3}$, the initialized scale.

Since the scale doesn't change much from the initialization scale, we try different initializations

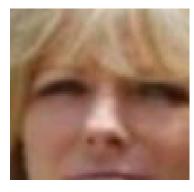
The bounding box for bald head seems not to cover the whole related region

initialization scale =0.66

Bald Head

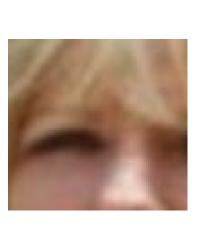
initialization scale	STN output accuracy	Combined model accuracy
0.33	0.759	0.788
0.66	0.832	0.828

Bald Head


initialization scale	STN output accuracy	Combined model accuracy
0.33	0.759	0.788
0.66	0.832	0.828

Significant improvement on performance by changing initialization scale

Eyes open


scale=0.33 0.923

scale=0.17 0.919

Since is not learning the network is not learning to change the initialized scale, we increase the learning rate of scale

Modification	STN output accuracy
initialization scale 0.33	0.759
initialization scale 0.66	0.832
initialization scale 0.66, Scale learning rate x10	0.810
initialization scale 0.33, Scale learning rate x100	0.777

What does the localization network

actually learn?


Bald head

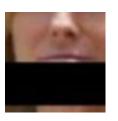
Bald head

Eyes open

Mouth open

Eyes open

Mouth open



Mouth open

Bald head

Mouth open

Bald head

Bald head

Eyes open

Bald head

Eyes open

Thank you!