End-to-end Learning of Action Detection from Frame Glimpses in Videos

CVPR 2016

Serena Yeung, Olga Russakovsky, Greg Mori, Li Fei-Fei

Presenter: Wei-Jen Ko

Action detection

• Predict which and when action occurs in the video.

Related Work

Motion features: Dense Trajectories Apearance features: CNN+SIFT+ COLOR Audio features: MFCC+ASR

Classified by SVM over exhaustive segments with varying scale and temporal position.

D. Oneata, J. Verbeek, and C. Schmid. The lear submission at thumos 2014.L. Wang, Y. Qiao, and X. Tang. Action recognition and detection by combining motion and appearance featuresJ. Yuan, Y. Pei, B. Ni, P. Moulin, and A. Kassim. Adsc submission at thumos challenge 2015

Related Work

Dynamic feature prioritization

Predictive corrective networks

Y-C. Su and K. Grauman. Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video , ECCV 2016.

A. Dave, O. Russakovsky, D. Ramanan. *Predictive-Corrective Networks for Action Detection,* CVPR 2017.

Proposed method

- Recurrent neural network-based end-to-end model
- Decides which frame to observe next and when to emit a prediction.

Recurrent Network

- s_n : start location of the action
- *e*_{*n*}: end location of the action
- I_{n+1} : location of the video frame to observe next
- c_n: confidence level of the
 prediction
- *P*_{*n*}: prediction indicator

 $S_{n, e_{n, l_{n+1}}}$ normalized to [0,1]

Loss function

$$L(D) = \sum_{n} L_{cls}(d_n) + \gamma \sum_{n} \sum_{m} \mathbb{1}[y_{nm} = 1]L_{loc}(d_n, g_m)$$

L_{cls}(d_n): Cross-entropy loss on confidence *Cn*

 $L_{loc}(d_n, g_m)$: L2- regression loss minimizing the distance $\|(s_n, e_n) - (s_m, e_m)\|$

p_n and I_{n+1} trained by REINFORCE

Reward function

$$r_N = egin{cases} R_p & \mbox{negative reward if did not emit predictions for videos containg instances} \ N_+R_+ + N_-R_- & \mbox{otherwise} \end{cases}$$

THUMOS'14 Results

	<i>α</i> =0.5	α=0.4	α=0.3	<i>α</i> =0.2	α=0.1		
Karaman et al. [13]	0.9	1.4	2.1	3.4	4.6		
Wang et al. [39]	8.3	11.7	14.0	17.0	18.2		
Oneata et al. [22]	14.4	20.8	27.0	33.6	36.6		
Ours (full)	17.1	26.4	36.0	44.0	48.9		
Ablation Experiments							
Ours w/o d_{pred}	12.4	19.3	26.0	32.5	37.0		
Ours w/o d_{obs}	9.3	15.2	20.6	26.5	31.2		
Ours w/o d_{obs} w/o d_{pred}	8.6	14.6	20.0	27.1	33.3		
Ours w/o loc	5.5	9.9	16.2	22.7	27.5		
CNN with NMS	6.4	9.6	12.8	16.7	18.5		
LSTM with NMS	5.6	7.8	10.3	13.9	15.7		

CNN Probabilities	
Ground Truth	
Ours Predictions Observed Frames	
Ours Predictions w/o d _{obs} Observed Frames	

If observed frames are not be determined dynamically, it does not provide sufficient resolution to localize action boundaries.

ActivityNet Results

	[3]	Ours		[3]	Ours
Archery	34.7	5.2	Long Jump	41.1	56.8
Bowling	51.3	52.2	2 Mountain Climb.		53.0
Bungee	42.6	48.9	Paintball	31.2	12.5
Cricket	27.9	38.4	Playing Kickball	33.8	60.8
Curling	16.4	30.1	Playing Volley.	32.1	40.2
Discus Throw	26.2	17.6	Pole Vault	47.7	35.5
Dodgeball	26.6	61.3	Shot put	29.4	50.9
Doing Moto.	30.2	46.2	Skateboarding	21.3	34.4
Ham. Throw	22.2	13.7	Start Fire	25.3	38.4
High Jump	41.3	21.9	Triple Jump	36.4	16.1
Javelin Throw	48.1	35.7			
mAP				33.2	36.7

	[3]	Ours		[3]	Ours
Attend Conf.	28.3	56.5	Phoning	34.7	52.1
Search Security	24.5	33.9	Pumping Gas	54.7	34.0
Buy Fast Food	34.4	45.8	Setup Comp.	37.4	30.3
Clean Laptop Fan	26.0	35.8	Sharp. Knife	36.3	35.2
Making Copies	18.2	41.7	Sort Books	29.3	16.7
Organizing Boxes	29.6	19.1	Using Comp.	37.4	50.2
Organiz. Cabin.	19.0	43.7	Using ATM	29.5	64.9
Packing	28.0	39.1			
mAP				31.1	39.9

Table 4: Per-class breakdown and mAP on the ActivityNet Work subset, at IOU of $\alpha = 0.5$.

Table 3: Per-class breakdown and mAP on the ActivityNet Sports subset, at IOU of $\alpha = 0.5$.

Strengths:

- First End-to-end training approach
- Select important frames to observe, no exhaustive searching
- Better results

