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Recognizing object instances

Kristen Grauman

UT-Austin

Announcements

• Assignment 1 is out, due Fri Sept 22
• Presentation assignments - up this week

• Reminder – no laptops, phones, etc. in class 
please

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Recognizing object instances Basics in feature extraction

…

Image Formation

Slide credit: Derek Hoiem Slide credit: Derek Hoiem

Digital images
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Digital images
• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

2D

1D

Digital color images

R G B

Color images, 
RGB color 
space

Digital color images

Kristen Grauman

Main idea: image filtering

• Compute a function of the local neighborhood at 
each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:
– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem

Motivation: noise reduction

• Even multiple images of the same static scene will 
not be identical.

Kristen Grauman

Motivation: noise reduction

• Even multiple images of the same static scene will 
not be identical.

• How could we reduce the noise, i.e., give an estimate 
of the true intensities?

• What if there’s only one image?

Kristen Grauman
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First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Assumptions: 
• Expect pixels to be like their neighbors

• Expect noise processes to be independent from pixel to pixel

First attempt at a solution

• Let’s replace each pixel with an average of all 
the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner

Weighted Moving Average

Can add weights to our moving average

Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D
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Source: S. Seitz

Moving Average In 2D
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Moving Average In 2D
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Source: S. Seitz

Moving Average In 2D
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Source: S. Seitz

Moving Average In 2D
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Moving Average In 2D
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Source: S. Seitz

Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 
around  image pixel F[i,j]

Attribute uniform 
weight to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights

Correlation filtering

Filtering an image: replace each pixel with a linear 
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 
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Averaging filter
• What values belong in the kernel H for the moving 

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?

Smoothing by averaging
depicts box filter: 
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have 
the most influence on the output?

• Removes high-frequency components from the 
image (“low-pass filter”).

This kernel is an 
approximation of a 2d 
Gaussian function:

Source: S. Seitz

Smoothing with a Gaussian

Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of 
smoothing

σ = 2 with 
30 x 30 
kernel

σ = 5 with 
30 x 30 
kernel

Kristen Grauman

Smoothing with a Gaussian

for sigma=1:3:10 
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h); 
imshow(out);
pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.

Kristen Grauman
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Properties of smoothing filters

• Smoothing
– Values positive 

– Sum to 1  _______________________

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

Kristen Grauman

Predict the outputs using 
correlation filtering

000

010

000

* = ?

000

100

000
* = ?

111
111
111

000
020
000 -* = ?

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered 
(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left
by 1 pixel 
with 
correlation

Source: D. Lowe
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Practice with linear filters

Original

?
111

111

111

Source: D. Lowe

Practice with linear filters

Original

111

111

111

Blur (with a
box filter)

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000 - ?

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter:
accentuates differences 
with local average

Source: D. Lowe

Filtering examples: sharpening

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Filtering application: Hybrid Images
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Application: Hybrid Images
Gaussian Filter

Laplacian Filter

A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Main idea: image filtering

• Compute a function of the local neighborhood at 
each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:
– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Why are gradients important?

Kristen Grauman

Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Source: L. Lazebnik

An edge is a place of rapid change in the 
image intensity function.
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Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite 
differences:

To implement above as convolution, what would be the 
associated filter?
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Kristen Grauman

Partial derivatives of an image

Which shows changes with respect to x?
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(showing filters for correlation)Kristen Grauman

Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit Steve Seitz

Mask properties
• Smoothing

– Values positive 

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– ___________ signs used to get high response in regions of high 

contrast

– Sum to ___  no response in constant regions

– High absolute value at points of high contrast

Kristen Grauman

Main idea: image filtering

• Compute a function of the local neighborhood at 
each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:
– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Template matching

• Filters as templates: 

Note that filters look like the effects they are intended 
to find --- “matched filters”

• Use normalized cross-correlation score to find a 
given pattern (template) in the image.

• Normalization needed to control for relative 
brightnesses.
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Template matching

Scene

Template (mask)

A toy example

Template matching

Template

Detected template

Template matching

Detected template Correlation map

Where’s Waldo?

Scene

Template

Where’s Waldo?

Detected template

Template

Where’s Waldo?

Detected template Correlation map
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Template matching

Scene

Template

What if the template is not identical to some 
subimage in the scene?

Template matching

Detected template

Template

Match can be meaningful, if scale, orientation, 
and general appearance is right.

…but we can do better!...

Summary so far

• Compute a function of the local neighborhood at 
each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:
– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Specific object recognition methods

Local features:
detection and description 

Basic goal



CS381V Fall 2017 - lecture 2 - instance 
recognition

9/5/2017

12

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
11 dxx x

],,[ )2()2(
12 dxx x

Kristen Grauman

Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!

Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

• Must provide some invariance to geometric 
and photometric differences between the two 
views.

?

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

• What points would you choose?

Detecting corners
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Compute “cornerness” response at every pixel.

Detecting corners Detecting corners

Detecting local invariant 
features

• Detection of interest points
– Harris corner detection

– Scale invariant blob detection: LoG

Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:
no change along 
the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:

First, consider an axis-aligned corner:

What does this matrix reveal?
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First, consider an axis-aligned corner:

This means dominant gradient directions align with 
x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.

What does this matrix reveal?

What if we have a corner that is not aligned with the 
image axes? 

What does this matrix reveal?

Since M is symmetric, we have TXXM 









2

1

0

0




iii xMx 

The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.

Corner response function

“flat” region

1 and 2 are 
small;

“edge”:

1 >> 2

2 >> 1

“corner”:

1 and 2 are large,
1 ~ 2;

Cornerness score 
(other variants possible) 

Harris corner detector

1) Compute M matrix for each image window to 
get their cornerness scores.

2) Find points whose surrounding window gave 
large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 
non-maximum suppression

Harris Detector: Steps Harris Detector: Steps
Compute corner response f
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Harris Detector: Steps
Find points with large corner response: f > threshold

Harris Detector: Steps
Take only the points of local maxima of f

Harris Detector: Steps Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

TXXM 









2

1

0

0


Yes

Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

All points will be 
classified as edges

Corner !

Yes

No

Scale invariant interest points

How can we independently select interest points in 
each image, such that the detections are repeatable 
across different scales?
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Automatic Scale Selection

K. Grauman, B. Leibe

How to find corresponding patch sizes, 
with only one image in hand?

Automatic scale selection

Intuition: 
• Find scale that gives local maxima of some function 

f in both position and scale.

f

region size

Image 1
f

region size

Image 2

s1 s2

Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
)),((

1
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
)),((

1
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
)),((

1
xIf

mii
)),((

1
 xIf

mii

What can be the “signature” function?

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D

2

2

2

2
2

y

g

x

g
g










Blob detection in 2D: scale selection

Laplacian-of-Gaussian = “blob” detector
2

2

2

2
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x

g
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img1 img2 img3

Blob detection in 2D

We define the characteristic scale as the scale 
that produces peak of Laplacian response

characteristic scale

Slide credit: Lana Lazebnik
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Example

Original image 
at ¾ the size

Original image 
at ¾ the size

Scaled down image

Original image

Scaled down image

Original image

Scaled down image

Original image

Scaled down image

Original image

Scaled down image

Original image
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Scaled down image

Original image )()(  yyxx LL 

1

2

3

4

5

 List of
(x, y, σ)

scale

Scale invariant interest points

Interest points are local maxima in both position 
and scale.

Squared filter 
response maps

Scale-space blob detector: Example

T. Lindeberg.  Feature detection with automatic scale selection.  IJCV 1998.

Scale-space blob detector: Example

Image credit: Lana Lazebnik

We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement.

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Technical detail Recap so far: interest points

• Interest point detection
– Harris corner detector

– Laplacian of Gaussian, automatic scale selection
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
11 dxx x

],,[ )2()2(
12 dxx x

Kristen Grauman

Geometric transformations

e.g. scale, 
translation, 
rotation

Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial

Raw patches as local descriptors

The simplest way to describe the 
neighborhood around an interest 
point is to write down the list of 
intensities to form a feature vector.

But this is very sensitive to even 
small shifts, rotations.

Scale Invariant Feature Transform (SIFT) 
descriptor [Lowe 2004] 

• Use histograms to bin pixels within sub-patches 
according to their orientation.

0 2p
gradients binned by orientation

subdivided local patch

Final descriptor = 
concatenation of all 
histograms, normalize

histogram per grid cell
http://www.vlfeat.org/overview/sift.html

Interest points and their 
scales and orientations
(random subset of 50)

SIFT descriptors

Scale Invariant Feature Transform (SIFT) 
descriptor [Lowe 2004] 
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CSE 576: Computer Vision

Making descriptor rotation invariant

Image from Matthew Brown

• Rotate patch according to its dominant gradient 
orientation

• This puts the patches into a canonical orientation.

• Extraordinarily robust matching technique
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Lots of code available, e.g. http://www.vlfeat.org/overview/sift.html

Steve Seitz

SIFT descriptor [Lowe 2004] 

Example

NASA Mars Rover images NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Example

SIFT properties

• Invariant to

– Scale 

– Rotation

• Partially invariant to

– Illumination changes

– Camera viewpoint

– Occlusion, clutter

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

Kristen Grauman
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Matching local features Matching local features

?

To generate candidate matches, find patches that have 
the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or 
closest k, or within a thresholded distance)

Image 1 Image 2

Ambiguous matches

At what SSD value do we have a good match?

To add robustness to matching, can consider ratio : 
distance to best match  / distance to second best match

If low, first match looks good.

If high, could be ambiguous match.

Image 1 Image 2

? ? ? ?

Matching SIFT Descriptors
• Nearest neighbor (Euclidean distance)
• Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004

http://www.vlfeat.org/overview/sift.html

Interest points and their 
scales and orientations
(random subset of 50)

SIFT descriptors

Scale Invariant Feature Transform (SIFT) 
descriptor [Lowe 2004] SIFT (preliminary) matches

http://www.vlfeat.org/overview/sift.html

img1

img1 img2

img2
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Value of local (invariant) features

• Complexity reduction via selection of distinctive points

• Describe images, objects, parts without requiring 
segmentation

• Local character means robustness to clutter, occlusion

• Robustness: similar descriptors in spite of noise, blur, etc.

Applications of local 
invariant features

• Wide baseline stereo
• Motion tracking
• Panoramas
• Mobile robot navigation
• 3D reconstruction
• Recognition
• …

Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Photo tourism [Snavely et al.] Recognition of specific objects, scenes

Lowe 1999

Many current applications - 2017
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Summary so far

• Interest point detection
– Harris corner detector

– Laplacian of Gaussian, automatic scale selection

• Invariant descriptors
– Rotation according to dominant gradient direction

– Histograms for robustness to small shifts and 
translations (SIFT descriptor)

Plan for today

• 1. Basics in feature extraction: filtering

• 2. Invariant local features

• 3. Recognizing object instances

“Groundhog Day” [Rammis, 1993]Visually defined query

“Find this 
clock”

Example I: Visual search in feature films

“Find this 
place”

Recognizing or retrieving
specific objects

Slide credit: J. Sivic

Find these landmarks ...in these images and 1M more
Slide credit: J. Sivic

Recognizing or retrieving
specific objects

Example II: Search photos on the web for particular places 

Why is it difficult?

Want to find the object despite possibly large changes in
scale, viewpoint, lighting and partial occlusion

ViewpointScale

Lighting Occlusion

Slide credit: J. Sivic

We can’t expect to match such varied instances with a single 
global template...
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Instance recognition: key new ideas

• Visual words

• quantization, index, bags of words

• Spatial verification

• affine; RANSAC, Hough

Indexing local features

• Each patch / region has a descriptor, which is a 
point in some high-dimensional feature space 
(e.g., SIFT)

Descriptor’s 
feature space

Kristen Grauman

Indexing local features

• When we see close points in feature space, we 
have similar descriptors, which indicates similar 
local content.

Descriptor’s 
feature space

Database 
images

Query 
image

Easily can have millions of 
features to search!Kristen Grauman

Indexing local features: 
inverted file index

• For text 
documents, an 
efficient way to find 
all pages on which 
a word occurs is to 
use an index…

• We want to find all 
images in which a 
feature occurs.

• To use this idea, 
we’ll need to map 
our features to 
“visual words”.

Kristen Grauman

Visual words

• Map high-dimensional descriptors to tokens/words 
by quantizing the feature space

Descriptor’s 
feature space

• Quantize via 
clustering, let 
cluster centers be 
the prototype 
“words”

• Determine which 
word to assign to 
each new image 
region by finding 
the closest cluster 
center.

Word #2

Kristen Grauman

Visual words: main idea
• Extract some local features from a number of images …

e.g., SIFT descriptor space: each 
point is 128-dimensional

Slide credit: D. Nister, CVPR 2006
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Visual words: main idea Visual words: main idea

Visual words: main idea

Each point is a 
local descriptor, 
e.g. SIFT vector. 

Visual words
• Example: each 

group of patches 
belongs to the 
same visual word

Figure from  Sivic & Zisserman, ICCV 2003Kristen Grauman
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Inverted file index

• Database images are loaded into the index mapping 
words to image numbers

Kristen Grauman

• New query image is mapped to indices of database 
images that share a word.

Inverted file index

Kristen Grauman

Instance recognition:
remaining issues

• How to summarize the content of an entire 
image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 
agreement?

Kristen Grauman

Analogy to documents

Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our eyes. 
For a long time it was thought that the retinal 
image was transmitted point by point to visual 
centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the 
image in the eye was projected. Through the 
discoveries of Hubel and Wiesel we now 
know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By 
following the visual impulses along their path 
to the various cell layers of the optical cortex, 
Hubel and Wiesel have been able to 
demonstrate that the message about the 
image falling on the retina undergoes a step-
wise analysis in a system of nerve cells 
stored in columns. In this system each cell 
has its specific function and is responsible for 
a specific detail in the pattern of the retinal 
image.

sensory, brain, 
visual, perception, 

retinal, cerebral cortex,
eye, cell, optical 

nerve, image
Hubel, Wiesel

China is forecasting a trade surplus of $90bn 
(£51bn) to $100bn this year, a threefold 
increase on 2004's $32bn. The Commerce 
Ministry said the surplus would be created by 
a predicted 30% jump in exports to $750bn, 
compared with a 18% rise in imports to 
$660bn. The figures are likely to further 
annoy the US, which has long argued that 
China's exports are unfairly helped by a 
deliberately undervalued yuan.  Beijing 
agrees the surplus is too high, but says the 
yuan is only one factor. Bank of China 
governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic 
demand so more goods stayed within the 
country. China increased the value of the 
yuan against the dollar by 2.1% in July and 
permitted it to trade within a narrow band, but 
the US wants the yuan to be allowed to trade 
freely. However, Beijing has made it clear that 
it will take its time and tread carefully before 
allowing the yuan to rise further in value.

China, trade, 
surplus, commerce, 

exports, imports, US, 
yuan, bank, domestic, 

foreign, increase, 
trade, value

ICCV 2005 short course, L. Fei-Fei

Bags of visual words

• Summarize entire image 
based on its distribution 
(histogram) of word 
occurrences.

• Analogous to bag of words 
representation commonly 
used for documents.



CS381V Fall 2017 - lecture 2 - instance 
recognition

9/5/2017

28

Comparing bags of words
• Rank frames by normalized scalar product between their 

(possibly weighted) occurrence counts---nearest
neighbor search for similar images.

[5  1   1    0][1  8   1    4]          

jd


q


,
,

∑ ∗

∑
 

∗ ∑
 

for vocabulary of V words

Inverted file index and
bags of words similarity

w91

1. Extract words in query

2. Inverted file index to find 
relevant frames

3. Compare word counts
Kristen Grauman

Instance recognition:
remaining issues

• How to summarize the content of an entire 
image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 
agreement?

Kristen Grauman

Vocabulary size
Results for recognition task 
with 6347 images 

Nister & Stewenius, CVPR 2006Influence on performance, sparsity?

Branching 
factors
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K. Grauman, B. Leibe

Vocabulary Trees: hierarchical clustering 
for large vocabularies
• Tree construction:

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Vocabulary Tree

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Vocabulary trees: complexity

Number of words given tree parameters: 
branching factor and number of levels

Word assignment cost vs. flat vocabulary

Visual words/bags of words

+  flexible to geometry / deformations / viewpoint

+  compact summary of image content

+  provides vector representation for sets

+  very good results in practice

- background and foreground mixed when bag 
covers whole image

- optimal vocabulary formation remains unclear

- basic model ignores geometry – must verify 
afterwards, or encode via features

Kristen Grauman

Instance recognition:
remaining issues

• How to summarize the content of an entire 
image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 
agreement?

Kristen Grauman

a
f

z

e

e

a
f
ee

h

h

Which matches better?

Derek Hoiem

Spatial Verification

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Spatial Verification

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity
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Spatial Verification: two basic strategies

• RANSAC

• Generalized Hough Transform

Kristen Grauman

Outliers affect least squares fit

Outliers affect least squares fit RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have much 
support from rest of the points.

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 
points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

212

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

That is an example fitting a model 

(line)…

What about fitting a transformation 
(translation)?

RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 
base transformation estimate

2. Compute model from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of model on all of the inliers

• Keep the model with the largest number of inliers

RANSAC verification

For matching specific scenes/objects, common to 
use an affine transformation for spatial verification

Fitting an affine transformation
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Approximates viewpoint 
changes for roughly 
planar objects and 
roughly orthographic 
cameras.

RANSAC verification
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Spatial Verification: two basic strategies

• RANSAC
– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

• RANSAC
– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Voting
• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.

• Voting is a general technique where we let the features 
vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features.

Kristen Grauman

Difficulty of line fitting

Kristen Grauman

Hough Transform for line fitting

• Given points that belong to a line, what 
is the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 
technique that can be used to answer 
all of these questions.

Main idea: 

1.  Record vote for each possible line 
on which each edge point lies.

2.  Look for lines that get many votes.

Kristen Grauman

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz

Finding lines in an image: Hough space

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) 
for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local 
features, then each feature match gives an alignment 
hypothesis (for scale, translation, and orientation of 
model in image).

Model Novel image

Adapted from Lana Lazebnik

Voting: Generalized Hough Transform

• A hypothesis generated by a single match may be 
unreliable,

• So let each match vote for a hypothesis in Hough space

Model Novel image

Gen Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 
and a model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
geometric verification 
• Estimate least squares affine transformation 

• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Slide credit: Lana Lazebnik



CS381V Fall 2017 - lecture 2 - instance 
recognition

9/5/2017

36

Objects recognized, Recognition in 
spite of occlusion

Example result

Background subtract 
for model boundaries

[Lowe]

Gen Hough vs RANSAC

GHT

• Single correspondence -> 
vote for all consistent 
parameters

• Represents uncertainty in the 
model parameter space

• Linear complexity in number 
of correspondences and 
number of voting cells; 
beyond 4D vote space 
impractical

• Can handle high outlier ratio

RANSAC

• Minimal subset of 
correspondences to 
estimate model -> count 
inliers

• Represents uncertainty 
in image space

• Must search all data 
points to check for inliers 
each iteration

• Scales better to high-d 
parameter spaces

Kristen Grauman
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Video Google System

1. Collect all words within 
query region

2. Inverted file index to find 
relevant frames

3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
• http://www.robots.ox.ac.uk/~vgg/r

esearch/vgoogle/index.html

Query 
region

Retrieved fram
es

Object retrieval with large vocabularies and fast 
spatial matching, Philbin et al., CVPR 2007

[Philbin CVPR’07]

Query Results from 5k Flickr images (demo available for 100k set)

Instance recognition 
applications

• Snap, pick, pay

• https://www.usatoday.com/videos/tech/201
4/10/31/18261641/ Slide credit: Kristen Grauman

World-scale mining of objects and events from 
community photo collections, Quack et al., CIVR 2008

Moulin Rouge

Tour Montparnasse Colosseum

Viktualienmarkt
Maypole

Old Town Square (Prague)

Auto-annotate by connecting to 
content on Wikipedia!
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B. Leibe

Example Applications

Mobile tourist guide
• Self-localization
• Object/building recognition
• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
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Web Demo: Movie Poster Recognition

http://www.kooaba.com/en/products_engine.html#

50’000 movie
posters indexed

Query-by-image
from mobile phone
available in Switzer-
land

Recognition via feature 
matching+spatial verification

Pros: 
• Effective when we are able to find reliable features 

within clutter

• Great results for matching specific instances

Cons:
• Scaling with number of models

• Spatial verification as post-processing – not 
seamless, expensive for large-scale problems

• Not suited for category recognition.

Kristen Grauman

Summary (Part 3)

• Matching local invariant features

– To find specific objects and scenes.

• Bag of words representation: quantize feature space to 
make discrete set of visual words
– Summarize image by distribution of words
– Index individual words

• Inverted index: pre-compute index to enable faster 
search at query time

• Recognition of instances via alignment: matching 
local features followed by spatial verification

– Robust fitting : RANSAC, GHT

Kristen Grauman

Coming up

• Today - sign sheet if not registered / on wait list

• Read assigned papers, review 2
– Don’t be afraid of the ImageNet IJCV paper!

• Assignment 1 out now, due Sept 22


