

Announcements

- Assignment 1 is out, due Fri Sept 22
- Presentation assignments up this week
- Reminder no laptops, phones, etc. in class please

 Function specified by a "filter" or mask saying how to combine values from neighbors.

Adapted from Derek Ho

· Uses of filtering:

- Enhance an image (denoise, resize, etc)
- Extract information (texture, edges, etc)
- Detect patterns (template matching)

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution Let's replace each pixel with an average of all the values in its neighborhood Moving average in 1D:

Summary so far

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- · Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Plan for today

- 1. Basics in feature extraction: filtering
- 2. Invariant local features
- 3. Specific object recognition methods

and photometric differences between the two views.

 Matching: Determine correspondence between descriptors in two views

First, consider an axis-aligned corner:

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

Look for locations where **both** λ 's are large.

If either λ is close to 0, then this is **not** corner-like. What if we have a corner that is not aligned with the image axes?

Raw patches as local descriptors

The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector.

But this is very sensitive to even small shifts, rotations.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

Value of local (invariant) features

- · Complexity reduction via selection of distinctive points
- Describe images, objects, parts without requiring segmentation
- Local character means robustness to clutter, occlusion
- Robustness: similar descriptors in spite of noise, blur, etc.

Applications of local invariant features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
- ...

Summary so far

- Interest point detection
 - Harris corner detector
 - Laplacian of Gaussian, automatic scale selection
- · Invariant descriptors
 - Rotation according to dominant gradient direction
 - Histograms for robustness to small shifts and translations (SIFT descriptor)

Plan for today

- 1. Basics in feature extraction: filtering
- 2. Invariant local features
- 3. Recognizing object instances

- Visual words
- quantization, index, bags of words
- Spatial verification
- affine; RANSAC, Hough

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?

Instance recognition: remaining issues How to summarize the content of an entire image? And gauge overall similarity? How large should the vocabulary be? How to

- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?

Vocabulary trees: complexity

Number of words given tree parameters: branching factor and number of levels

Word assignment cost vs. flat vocabulary

Visual words/bags of words

- + flexible to geometry / deformations / viewpoint
- + compact summary of image content
- + provides vector representation for sets
- very good results in practice
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry must verify afterwards, or encode via features

Kristen Grauman

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?

- RANdom Sample Consensus
- **Approach**: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- **Intuition**: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC for line fitting

Repeat **N** times:

- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are **d** or more inliers, accept the line and refit using all inliers

Lana Lazebr

RANSAC: General form

- RANSAC loop:
- 1. Randomly select a *seed group* of points on which to base transformation estimate
- 2. Compute model from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of model on all of the inliers
- · Keep the model with the largest number of inliers

Spatial Verification: two basic strategies

- RANSAC
 - Typically sort by BoW similarity as initial filter
 - Verify by checking support (inliers) for possible affine transformations
 - e.g., "success" if find an affine transformation with > N inlier correspondences

· Generalized Hough Transform

- Let each matched feature cast a vote on location, scale, orientation of the model object
- Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

RANSAC

- Typically sort by BoW similarity as initial filter
- Verify by checking support (inliers) for possible affine transformations
 - e.g., "success" if find an affine transformation with > N inlier correspondences

· Generalized Hough Transform

- Let each matched feature cast a vote on location,
- scale, orientation of the model object - Verify parameters with enough votes

risten Grauman

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.

Model

Novel image

Gen Hough Transform details (Lowe's system)

- **Training phase:** For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- **Test phase:** Let each match btwn a test SIFT feature and a model feature vote in a 4D Hough space
 - Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
 - Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
 - Estimate least squares affine transformation
 - · Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Recognition via feature matching+spatial verification

Pros:

- Effective when we are able to find reliable features within clutter
- · Great results for matching specific instances

Cons:

- Scaling with number of models
- Spatial verification as post-processing not
- seamless, expensive for large-scale problems
- Not suited for category recognition.

Kristen Grauman

Summary (Part 3)

· Matching local invariant features

- To find specific objects and scenes.
- Bag of words representation: quantize feature space to make discrete set of visual words
 - Summarize image by distribution of words
 - Index individual words
- Inverted index: pre-compute index to enable faster search at query time
- Recognition of instances via alignment: matching local features followed by spatial verification
 Robust fitting : RANSAC, GHT

Kristen Grauman

Coming up

- · Today sign sheet if not registered / on wait list
- Read assigned papers, review 2

 Don't be afraid of the ImageNet IJCV paper!
- · Assignment 1 out now, due Sept 22