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Recognizing object categories

Kristen Grauman

UT-Austin

Wed Sept 13, 2017

Announcements

• Reminders:
• Assignment 1 due Sept 22 11:59 pm on Canvas
• No laptops, phones, tablets, etc. in class

• Thoughts on review sharing?

• Questions about presentations, experiments, 
discussion proponent/opponent?

Last time: Recognizing instances Last time: Recognizing instances

• 1. Basics in feature extraction: filtering
• 2. Invariant local features
• 3. Recognizing object instances

Instance recognition:
remaining issues

• How to summarize the content of an entire 
image?  And gauge overall similarity?

• How large should the vocabulary be?  How to 
perform quantization efficiently?

• Is having the same set of visual words enough to 
identify the object/scene?  How to verify spatial 
agreement?

Kristen Grauman

Spatial Verification

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity
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Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Spatial Verification

Query Query

DB image with high BoW
similarity DB image with high BoW

similarity

Spatial Verification: two basic strategies

• RANSAC

• Generalized Hough Transform

Slide credit: Kristen Grauman

Outliers affect least squares fit Outliers affect least squares fit

RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have much 
support from rest of the points.

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 
points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers

Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize-and-
verify loop

Source: R. Raguram Lana Lazebnik

That is an example fitting a model

(line)…

What about fitting a transformation (translation, 
affine…)?

Robust feature-based alignment

Source: L. Lazebnik
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• Extract features

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Robust feature-based alignment RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 
base transformation estimate

2. Compute model from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of model on all of the inliers

• Keep the model with the largest number of inliers
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RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

RANSAC verification

For matching specific scenes/objects, common to 
use an affine transformation for spatial verification

Fitting an affine transformation
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changes for roughly 
planar objects and 
roughly orthographic 
cameras.
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RANSAC verification Spatial Verification: two basic strategies

• RANSAC
– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

• RANSAC
– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Voting
• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.

• Voting is a general technique where we let the features 
vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features.

Kristen Grauman

Difficulty of line fitting

Kristen Grauman

Hough Transform for line fitting

• Given points that belong to a line, what 
is the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 
technique that can be used to answer 
all of these questions.

Main idea: 

1.  Record vote for each possible line 
on which each edge point lies.

2.  Look for lines that get many votes.

Kristen Grauman
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz

Finding lines in an image: Hough space

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) 
for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local 
features, then each feature match gives an alignment 
hypothesis (for scale, translation, and orientation of 
model in image).

Model Novel image

Adapted from Lana Lazebnik

Voting: Generalized Hough Transform

• A hypothesis generated by a single match may be 
unreliable,

• So let each match vote for a hypothesis in Hough space

Model Novel image
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Gen Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 
and a model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
geometric verification 
• Estimate least squares affine transformation 

• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Slide credit: Lana Lazebnik

Objects recognized, Recognition in 
spite of occlusion

Example result

Background subtract 
for model boundaries

[Lowe]

Gen Hough vs RANSAC

GHT

• Single correspondence -> 
vote for all consistent 
parameters

• Represents uncertainty in the 
model parameter space

• Linear complexity in number 
of correspondences and 
number of voting cells; 
beyond 4D vote space 
impractical

• Can handle high outlier ratio

RANSAC

• Minimal subset of 
correspondences to 
estimate model -> count 
inliers

• Represents uncertainty 
in image space

• Must search all data 
points to check for inliers 
each iteration

• Scales better to high-d 
parameter spaces

Kristen Grauman
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Video Google System

1. Collect all words within 
query region

2. Inverted file index to find 
relevant frames

3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html

Query 
region

Retrieved fram
es

Recognition via feature 
matching+spatial verification

Pros: 
• Effective when we are able to find reliable features 

within clutter

• Great results for matching specific instances

Cons:
• Scaling with number of models

• Spatial verification as post-processing – not 
seamless, expensive for large-scale problems

• Not suited for category recognition.

Kristen Grauman
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Summary: instance recognition

• Matching local invariant features

– Useful not only to provide matches for multi-view 
geometry, but also to find objects and scenes.

• Bag of words representation: quantize feature space to 
make discrete set of visual words
– Summarize image by distribution of words
– Index individual words

• Inverted index: pre-compute index to enable faster 
search at query time

• [today] Recognition of instances via alignment:
matching local features followed by spatial verification

– Robust fitting : RANSAC, GHT
Kristen Grauman

Rest of today
• Intro to categorization problem
• Object categorization as discriminative classification

a) Boosting + fast face detection example
b) Nearest neighbors + scene recognition example
c) Support vector machines + pedestrian detection example

i. Pyramid match kernels, spatial pyramid match
d) Convolutional neural networks + ImageNet example

What does recognition involve?

Slide credit:
Fei-Fei Li

Detection: are there people?

Slide credit:
Fei-Fei Li

Activity: What are they doing?

Slide credit:
Fei-Fei Li

Object categorization

mountain

building

tree

banner

vendor
people

street lamp

Slide credit:
Fei-Fei Li
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Instance recognition

Potala 
Palace

A particular 
sign

Slide credit:
Fei-Fei Li

Scene and context categorization

• outdoor

• city

• …

Slide credit:
Fei-Fei Li

Attribute recognition

flat

gray
made of 

fabric

crowded

Slide credit:
Fei-Fei Li
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Object Categorization

• Task Description
 “Given a small number of  training images of a category, 

recognize a-priori unknown instances of that category and assign 
the correct category label.”

• Which categories are feasible visually?

German
shepherd

animaldog living
being

“Fido”
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Visual Object Categories

• Basic Level Categories in human categorization 
[Rosch 76, Lakoff 87]
 The highest level at which category members have similar 

perceived shape
 The highest level at which a single mental image reflects the 

entire category
 The level at which human subjects are usually fastest at 

identifying category members
 The first level named and understood by children 

 The highest level at which a person uses similar motor actions 
for interaction with category members
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Visual Object Categories

• Basic-level categories in humans seem to be defined 
predominantly visually.

• There is evidence that humans (usually)
start with basic-level categorization 

before doing identification.
 Basic-level categorization is easier

and faster for humans than object
identification!

 How does this transfer to automatic 
classification algorithms?

Basic level

Individual 
level

Abstract 
levels

“Fido”

dog

animal

quadruped

German
shepherd

Doberman

cat cow

…

…

……

… …
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How many object categories are there?

Biederman 1987
Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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K. Grauman, B. LeibeK. Grauman, B. Leibe

Other Types of Categories

• Functional Categories
 e.g. chairs = “something you can sit on”

Challenges: robustness

Illumination Object pose Clutter

ViewpointIntra-class 
appearance

Occlusions

Challenges: 
context and human experience

Context cues

Challenges:
context and human experience

Context cues Function Dynamics

Video credit: J. Davis
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Challenges: complexity

• Millions of pixels in an image

• 30,000 human recognizable object categories

• 30+ degrees of freedom in the pose of articulated 
objects (humans)

• Billions of images online

• 300 hours of new video on YouTube per minute

• …
• About half of the cerebral cortex in primates is 

devoted to processing visual information [Felleman
and van Essen 1991]

Challenges: learning with 
minimal supervision

MoreLess

Slide from Pietro Perona, 2004 Object Recognition workshop Slide from Pietro Perona, 2004 Object Recognition workshop

Recognizing flat, textured 
objects (like books, CD 

covers, posters)

Reading license plates, 
zip codes, checks

Fingerprint recognition

Frontal face detection

What kinds of things work best today? What kinds of things work best today?
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Evolution of methods

• Hand-crafted models
• 3D geometry
• Hypothesize and align

• Hand-crafted features
• Learned models
• Data-driven

• “End-to-end” 
learning of 
features and 
models*,**

* Labeled data availability
** Architecture design decisions, parameters.

Generic category recognition:
basic framework

• Build/train object model

– (Choose a representation)

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates

Window-based models
Generating and scoring candidates

Car/non-car 
Classifier

Kristen Grauman

Window-based object detection

Car/non-car 
Classifier

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Select/learn 

features/classifier

Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman

Object proposals:
all windows -> probable regions

How “object-like” is each candidate region?

Constrained Parametric Min-Cuts for Automatic Object Segmentation.  
Carreira and Sminchisescu.  CVPR 2010

Also see Uijlings et al. 2012, Ferrari et al CVPR 2010, Endres et al ECCV 2010

Object recognition as classification

• What classifier?
– Factors in choosing:

• Generative or discriminative model?

• Data resources – how much training data?  

• How is the labeled data prepared?

• Training time allowance

• Test time requirements – real-time?

• Fit with the representation

Kristen Grauman
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Discriminative classifies

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005, Hays 2008, 
Torralba 2008,…...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998, 
Krizhevsky 2012…
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 
2001, Lazebnik 2006…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Kristen Grauman

• What categories are amenable to window-
based classification?

– Similar to specific object matching, we expect 
spatial layout to be roughly preserved.

– Unlike specific object matching, by training 
classifiers we attempt to capture intra-class variation 
or determine required discriminative features.

Kristen Grauman

Object recognition as classification

Image classification
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection

Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros

Main idea:

– Represent local texture with efficiently computable 
“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

– Form a cascade of such classifiers, rejecting clear 
negatives quickly

Viola-Jones face detector

Kristen Grauman

Boosting  intuition

Weak 
Classifier 1

Slide credit: Paul Viola

Boosting  illustration

Weights
Increased
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Boosting  illustration

Weak 
Classifier 2

Boosting  illustration

Weights
Increased

Boosting  illustration

Weak 
Classifier 3

Boosting  illustration

Final classifier is 
a combination of weak 
classifiers

Boosting: training

• Initially, weight each training example equally

• In each boosting round:
– Find the weak learner that achieves the lowest weighted training error

– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 

learners (weight of each learner is directly proportional to 

its accuracy)

• Exact formulas for re-weighting and combining weak 

learners depend on the particular boosting scheme (e.g., 

AdaBoost)
Slide credit: Lana Lazebnik

Boosting: pros and cons

• Advantages of boosting
• Integrates classification with feature selection

• Complexity of training is linear in the number of training 
examples

• Flexibility in the choice of weak learners, boosting scheme

• Testing is fast

• Easy to implement

• Disadvantages
• Needs many training examples

• Often found not to work as well as an alternative 
discriminative classifier, support vector machine (SVM), or 
CNNs

– especially for many-class problems

Slide credit: Lana Lazebnik
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Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time.

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman

Computing sum within a rectangle

• Let A,B,C,D be the 
values of the integral 
image at the corners of a 
rectangle

• Then the sum of original 
image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

• Only 3 additions are 
required for any size of 
rectangle!

D B

C A

Lana Lazebnik

Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time

Avoid scaling images 
scale features directly 
for same cost

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman

Considering all 
possible filter 
parameters: position, 
scale, and type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?

Use AdaBoost both to select the informative 
features and to form the classifier

Viola-Jones detector: features

Kristen Grauman

Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Outputs of a possible 
rectangle feature on 
faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman
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First two features 
selected

Viola-Jones Face Detector: Results
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• Even if the filters are fast to compute, each new 
image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative rates early on

• Apply less accurate but faster classifiers first to immediately 
discard windows that clearly appear to be negative

Kristen Grauman

Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers
[Implementation available in OpenCV: 
http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of 
classifiers with 

AdaBoost

Selected features, 
thresholds, and weights

New image

Kristen Grauman

Viola-Jones detector: summary

• A seminal approach to real-time object detection 

• Training is slow, but detection is very fast

• Key ideas

 Integral images for fast feature evaluation

 Boosting for feature selection

 Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 

Pe
rc

ep
tu

al
 a

n
d
 S

en
so

ry
 A

u
gm

en
te

d
 C

om
p
u
ti

n
g

V
is

u
a

l O
b

je
c

t 
R

e
c

o
g

n
it

io
n

 T
u

to
ri

a
l

V
is

u
a

l O
b

je
c

t 
R

e
c

o
g

n
it

io
n

 T
u

to
ri

a
l

Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Detecting profile faces?

Can we use the same detector?
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Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example using Viola-Jones detector

Frontal faces detected and then tracked,  character 
names inferred with alignment of script and subtitles.

Consumer application: iPhoto

http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnik
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Consumer application: iPhoto

Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

Consumer application: iPhoto

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik

Privacy Gift Shop – CV Dazzle

http://www.wired.com/2015/06/facebook-can-recognize-even-dont-show-face/ 

Wired, June 15, 2015
Slide credit: Kristen Grauman

Privacy Visor

http://www.3ders.org/articles/20150812-japan-3d-printed-privacy-visors-
will-block-facial-recognition-software.html Slide credit: Kristen Grauman
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Window-based detection: strengths

• Sliding window detection and global appearance 
descriptors:
 Simple detection protocol to implement
 Good feature choices critical

 Past successes for certain classes
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Window-based detection: Limitations

• High computational complexity 
 For example: 250,000 locations x 30 orientations x 4 scales = 

30,000,000 evaluations!

 If training binary detectors independently, means cost increases 
linearly with number of classes

• With so many windows, false positive rate better be low
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Limitations (continued)

• Not all objects are “box” shaped
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Limitations (continued)

• Non-rigid, deformable objects not captured well with 
representations assuming a fixed 2d structure; or must 
assume fixed viewpoint

• Objects with less-regular textures not captured well 
with holistic appearance-based descriptions
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Limitations (continued)

• If considering windows in isolation, context is lost

Figure credit: Derek Hoiem

Sliding window Detector’s view
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Limitations (continued)

• In practice, often entails large, cropped training set 
(expensive) 

• Requiring good match to a global appearance description 
can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Image classification:
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection

Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros

Slide credit: Kristen Grauman

Nearest Neighbor classification

• Assign label of nearest training data point to each 
test data point 

Voronoi partitioning of feature space 
for 2-category 2D data

from Duda et al.

Black = negative
Red = positive

Novel test example

Closest to a 
positive example 
from the training 
set, so classify it 
as positive.
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K-Nearest Neighbors classification

k = 5

Source: D. Lowe

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

If query lands here, the 5 
NN consist of 3 negatives 
and 2 positives, so we 
classify it as negative.

Black = negative
Red = positive

80M Tiny Images [Torralba et al. 2008]

Where in the World?

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. 
CVPR 2008.]

Where in the World?

Slide credit: James Hays

Where in the World?

Slide credit: James Hays

6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users
Slide credit: James Hays
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6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users
Slide credit: James Hays

Which scene properties are relevant?

A scene is a single surface that can be
represented by global (statistical) descriptors

Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

Slide Credit: Aude Olivia

Global texture: 
capturing the “Gist” of the scene

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

Capture global image properties while keeping some spatial 
information

Gist 
descriptor

Which scene properties are relevant?

• Gist scene descriptor
• Color Histograms  - L*A*B* 4x14x14 histograms
• Texton Histograms – 512 entry, filter bank based
• Line Features – Histograms of straight line stats

Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays
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Slide credit: James Hays

Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.] Slide credit: James Hays

The Importance of Data

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
Slide credit: James Hays
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Nearest neighbors: pros and cons

• Pros: 

– Simple to implement

– Flexible to feature / distance choices

– Naturally handles multi-class cases

– Can do well in practice with enough representative data

• Cons:

– Large search problem to find nearest neighbors

– Storage of data

– Must know we have a meaningful distance function

Kristen Grauman

Today
• Intro to categorization problem
• Object categorization as discriminative classification

• Boosting + fast face detection example
• Nearest neighbors + scene recognition example
• Support vector machines + pedestrian detection example

• Pyramid match kernels, spatial pyramid match
• Convolutional neural networks + ImageNet example

Image classification:
Three landmark case studies

SVM + person 
detection

e.g., Dalal & Triggs

Boosting + face 
detection

Viola & Jones

NN + scene Gist 
classification

e.g., Hays & Efros

Linear classifiers

Linear classifiers

• Find linear function to separate positive and 
negative examples

0:negative

0:positive




b

b

ii

ii

wxx

wxx

Which line
is best?

Support Vector Machines (SVMs)

• Discriminative 
classifier based on 
optimal separating 
hyperplane

• Maximize the margin
between the positive 
and negative training 
examples
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Support vector machines
• Want line that maximizes the margin.

1:1)(negative

1:1)( positive




by

by

iii

iii

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

For support, vectors, 1 bi wx

Support vector machines
• Want line that maximizes the margin.

1:1)(negative

1:1)( positive




by

by

iii

iii

wxx

wxx

Margin MSupport vectors

For support, vectors, 1 bi wx

Distance between point 
and line: ||||

||

w

wx bi 

www

211



M

ww

xw 1


bΤ

For support vectors:

Support vector machines
• Want line that maximizes the margin.

1:1)(negative

1:1)( positive




by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1 bi wx

Distance between point 
and line: ||||

||

w

wx bi 

Therefore, the margin is  2 / ||w||

Margin M

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

wwT

2

1

1:1)(negative

1:1)( positive




by

by

iii

iii

wxx

wxx

Finding the maximum margin line

• Solution:  i iii y xw 

Support 
vector

learned
weight

Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

 i iii y xw 

byb
i iii   xxxw 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

 by

xf

ii 



 xx

xw

i isign         

b)(sign   )(


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Dalal & Triggs, CVPR 
2005

• Map each grid cell in the 
input window to a histogram 
counting the gradients per 
orientation.

• Train a linear SVM using 
training set of pedestrian vs. 
non-pedestrian windows.

Code available: 
http://pascal.inrialpes.fr/soft/olt/

Person detection
with HoG’s & linear SVM’s HoG descriptor

Code available:  http://pascal.inrialpes.fr/soft/olt/Dalal & Triggs, CVPR 2005 

Person detection
with HoGs & linear SVMs

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, 
International Conference on Computer Vision & Pattern Recognition - June 2005 

• http://lear.inrialpes.fr/pubs/2005/DT05/

YOLO detector

• https://pjreddie.com/darknet/yolo/

Question

• What if the data is not linearly separable?

Non-linear SVMs
 Datasets that are linearly separable with some noise 

work out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 
space:

0 x

0 x

0 x

x2
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Nonlinear SVMs

• The kernel trick: instead of explicitly computing 
the lifting transformation φ(x), define a kernel 
function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in the 
original feature space:

bKy
i

iii  ),( xx

Example
2-dimensional vectors x=[x1   x2]; 

let K(xi,xj)=(1 + xi
Txj)2

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T 

[1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj),   

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

Examples of kernel functions

 Linear:

 Gaussian RBF:

 Histogram intersection:

)
2

exp()(
2

2


ji

ji

xx
,xxK





k

jiji kxkxxxK ))(),(min(),(

j
T

iji xxxxK ),(

SVMs for recognition
1. Define your representation for each 

example.

2. Select a kernel function.

3. Compute pairwise kernel values 
between labeled examples

4. Use this “kernel matrix” to solve for 
SVM support vectors & weights.

5. To classify a new example: compute 
kernel values between new input 
and support vectors, apply weights, 
check sign of output.

Kristen Grauman

Local feature correspondence useful similarity 
measure for generic object categories

Kristen Grauman

What about a matching kernel? Partially matching sets of features

We introduce an approximate matching kernel that 
makes it practical to compare large sets of features 
based on their partial correspondences.

Optimal match:  O(m3)
Greedy match:   O(m2 log m)
Pyramid match: O(m)

(m=num pts)

[Previous work: Indyk & Thaper, Bartal, Charikar, Agarwal & 
Varadarajan, …]

Kristen Grauman
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Pyramid match: main idea

descriptor 
space

Feature space partitions 
serve to “match” the local 
descriptors within 
successively wider regions.

Kristen Grauman

Pyramid match: main idea

Histogram intersection 
counts number of possible 
matches at a given 
partitioning.

Kristen Grauman

Pyramid match kernel

• For similarity, weights inversely proportional to bin size
(or may be learned)

• Normalize these kernel values to avoid favoring large sets

[Grauman & Darrell, ICCV 2005]

measures 
difficulty of a 

match at level  

number of newly matched 
pairs at level

Pyramid match kernel

optimal partial 
matching

Optimal match:  O(m3)
Pyramid match: O(mL)

Kristen Grauman

Unordered sets of local features:
No spatial layout preserved!

Too much? Too little?

[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.

• Provides some loose (global) spatial layout 
information

Spatial pyramid match



9/19/2017

30

[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.

• Provides some loose (global) spatial layout 
information

Spatial pyramid match

Sum over PMKs 
computed in image 
coordinate space, 
one per word.

• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

Spatial pyramid match

• Can capture scene categories well---texture-like patterns 
but with some variability in the positions of all the local 
pieces.

• Sensitive to global shifts of the view

Confusion table

Spatial pyramid match SVMs: Pros and cons

• Pros
• Kernel-based framework is very powerful, flexible

• Often a sparse set of support vectors – compact at test time

• Work very well in practice, even with very small training 
sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Can be tricky to select best kernel function for a problem

• Computation, memory 
– During training time, must compute matrix of kernel values for 

every pair of examples

– Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik

Basic recognition models so far

Instances: 
recognition by 

alignment

Categories: 
Holistic appearance 
models (and sliding 
window detection)

Kristen Grauman

Summary so far

• Basic pipeline for window-based detection

– Model/representation/classifier choice
– Sliding window and classifier scoring

• Discriminative classifiers for window-based 
representations 
– Boosting

• Viola-Jones face detector example
– Nearest neighbors

• Scene recognition example
• 80M Tiny Images studies

– Support vector machines
• HOG person detection example 
• Pyramid match kernel
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Today
• Intro to categorization problem
• Object categorization as discriminative classification

• Boosting + fast face detection example
• Nearest neighbors + scene recognition example
• Support vector machines + pedestrian detection example

• Pyramid match kernels, spatial pyramid match
• Convolutional neural networks + ImageNet example

• Some new representations along the way
• Rectangular filters
• GIST
• HOG

Evolution of methods

• Hand-crafted models
• 3D geometry
• Hypothesize and align

• Hand-crafted features
• Learned models
• Data-driven

• “End-to-end” 
learning of 
features and 
models*,**

Traditional Image Categorization: 
Training phase

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Trained 
Classifier

Slide credit: Jia-Bin Huang

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Trained 
Classifier

Image 
Features

Testing

Test Image

Outdoor

PredictionTrained 
Classifier

Traditional Image Categorization: 
Testing phase

Slide credit: Jia-Bin Huang

Features have been key

SIFT [Lowe IJCV 04] HOG [Dalal and Triggs CVPR 05]

SPM [Lazebnik et al. CVPR 06] Textons

SURF, MSER, LBP, GIST, Color-SIFT, Color histogram, GLOH, …..
and many others:

• Each layer of hierarchy extracts features from output 
of previous layer

• All the way from pixels  classifier

• Layers have the (nearly) same structure

• Train all layers jointly

Learning a Hierarchy of Feature Extractors 

Layer 1Layer 1 Layer 2Layer 2 Layer 3Layer 3 Simple 
Classifier

Image/Video
Pixels

Image/video Labels

Slide: Rob Fergus
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Learning Feature Hierarchy
Goal: Learn useful higher-level features from images

Feature representation

Input data

1st layer  
“Edges”

2nd layer  
“Object parts”

3rd layer  
“Objects”

Pixels

Lee et al., ICML2009;  
CACM 2011

Slide: Rob Fergus

Learning Feature Hierarchy

• Better performance

• Other domains (Less clear how to hand engineer?):
– Kinect
– Video
– Multi spectral

• Feature computation time
– Dozens of features now regularly used [e.g., MKL]
– Getting prohibitive for large datasets (10’s sec /image)

Slide: R. Fergus

Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier

Slide credit: Jia-Bin Huang

Simple, Complex and Hypercomplex cells

David H. Hubel and Torsten Wiesel

David Hubel's Eye, Brain, and Vision

Suggested a hierarchy of feature detectors 
in the visual cortex, with higher level features 
responding to patterns of activation in lower 
level cells, and propagating activation 
upwards to still higher level cells.

Slide credit: Jia-Bin Huang

Hubel/Wiesel Architecture and Multi-layer Neural Network

Hubel and Weisel’s architecture Multi-layer Neural Network
- A non-linear classifier

Slide credit: Jia-Bin Huang

Neuron: Linear Perceptron

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

Slide credit: Pieter Abeel and Dan Klein
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Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Learning w

 Training examples

 Objective: a misclassification loss

 Procedure: 
 Gradient descent / hill climbing

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein

Two-layer perceptron network

Slide credit: Pieter Abeel and Dan Klein
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Two-layer neural network

Slide credit: Pieter Abeel and Dan Klein

Neural network properties

 Theorem (Universal function approximators): A 
two-layer network with a sufficient number of 
neurons can approximate any continuous 
function to any desired accuracy

 Practical considerations:
 Can be seen as learning the features

 Large number of neurons
 Danger for overfitting

 Hill-climbing procedure can get stuck in bad local 
optima

Slide credit: Pieter Abeel and Dan KleinApproximation by Superpositions of Sigmoidal Function,1989 

Significant recent impact on the field

Big labeled 
datasets

Deep learning

GPU technology

0
5

10
15
20
25
30

2011 2012 2013 2014 2015 2016

ImageNet top-5 error (%)

Slide credit: Dinesh Jayaraman

Convolutional Neural Networks 
(CNN, ConvNet, DCN)

• CNN = a multi-layer neural network with
– Local connectivity:

• Neurons in a layer are only connected to a small region 
of the layer before it 

– Share weight parameters across spatial positions:
• Learning shift-invariant filter kernels

Image credit: A. Karpathy
Jia-Bin Huang and Derek Hoiem, UIUC

Neocognitron [Fukushima, Biological Cybernetics 1980]

Deformation-Resistant 
Recognition

S-cells: (simple)
- extract local features

C-cells: (complex)
- allow for positional errors

Jia-Bin Huang and Derek Hoiem, UIUC

LeNet [LeCun et al. 1998]

Gradient-based learning applied to document 
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Jia-Bin Huang and Derek Hoiem, UIUC
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What is a Convolution?
• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik
Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

slide credit: S. Lazebnik

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik
Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

slide credit: S. Lazebnik
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Engineered vs. learned features

ImageImage

Feature extractionFeature extraction

PoolingPooling

ClassifierClassifier

Label

ImageImage

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

DenseDense

DenseDense

DenseDense

Label
Convolutional filters are trained in a 
supervised manner by back-propagating 
classification error

Jia-Bin Huang and Derek Hoiem, UIUC

SIFT Descriptor

Image 
Pixels Apply

oriented filters

Spatial pool 
(Sum) 

Normalize to unit 
length

Feature 
Vector

Lowe [IJCV 2004]

slide credit: R. Fergus

Spatial Pyramid Matching

SIFT
Features

Filter with 
Visual Words

Multi-scale
spatial pool 
(Sum) 

Max

Classifier

Lazebnik, 
Schmid, 

Ponce 
[CVPR 2006]

slide credit: R. Fergus

Visualizing what was learned

• What do the learned filters look like?

Typical first layer filters

https://www.wired.com/2012/06/google-x-neural-network/

Applications

• Handwritten text/digits
– MNIST (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese [Ciresan et al. 2012]

• Simpler recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

Slide: R. Fergus
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Application: ImageNet

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk

https://sites.google.com/site/deeplearningcvpr2014 Slide: R. Fergus

AlexNet

• Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Jia-Bin Huang and Derek Hoiem, UIUC

ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

AlexNet

Industry Deployment

• Used in Facebook, Google, Microsoft
• Image Recognition, Speech Recognition, ….
• Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face  
Verification, CVPR’14

Slide: R. Fergus

Beyond classification

• Detection
• Segmentation
• Regression 
• Pose estimation 
• Matching patches
• Synthesis

and many more…

Jia-Bin Huang and Derek Hoiem, UIUC

Recap
• Neural networks / multi-layer perceptrons

– View of neural networks as learning hierarchy of 
features

• Convolutional neural networks
– Architecture of network accounts for image 

structure
– “End-to-end” recognition from pixels 
– Together with big (labeled) data and lots of 

computation major success on benchmarks, 
image classification and beyond


