Learning Representations for Automatic Colorization

Gustav Larsson, Michael Maire, Gregory Shakhnarovich ECCV 2016

Background

- Requires high level understanding
 - Object identification
 - Segmentation
- Proxy for visual understanding

Contributions

- New ImageNet colorization benchmark
- Best results against all metrics
- Learning segmentation from colorization

Prior Methods

- Scribble [Levin et al. SIGGRAPH 2004]
 - Interactive
 - Color consistency assumption
- Transfer [Charpiat et al. ECCV 2008]
 - Reference image repo
- Fully Automatic [Deshpande et al. ICCY 2015]
 - Works on few scene classes
 - Best results with known scene type

Overview

- Self supervised on grayscale-converted color images
- Train CNN to predict hue/chroma given lightness
 - Histogram of potential colors
- Optional manually specified color biases

Author's Approach

- Baked-in semantic information
 - CNN trained on ImageNet
- Localize and recognize objects
- No hand-crafted features

Author's Approach

- Predict color histogram
 - Not single color
 - e.g. shirts can be many different colors

Fig. 9: Sampling colorizations. Left: Image & 3 samples; Right: Uncertainty map.

Author's Approach

- Hypercolumns
 - 16 vs 2
- Pixel output based on local patch
- Option to bias color towards reference image

Color Parameterization

- Images converted to grayscale
- RGB overdetermined
 - Intensity is a given
- HSV/HSL
- L*a*b (Lab)

$$L = \frac{R+G+B}{3}$$

Chrominance

Luminance

Chrominance

Both

Color Spaces

- HSL/HSV
- HVC
- Lab
 - Perceptually linear
 - L -> intensity
 - a -> green/red
 - b -> blue/yellow

Loss Function

- Single color prediction
 - $L_{reg}(x,y) = ||f(x) y||^2$
- Histogram prediction
 - $L_{hist}(x,y) = D_{KL}(y||f(x))$
 - KL-Divergence

Inferring Final Color

- 4 Methods
 - Sample
 - Mode
 - Median
 - Expectation

Architecture

- Modified VGG-16
- Hypercolumns fed to fully connected layer
 - approximation
- Pre-trained on ImageNet

Input: Grayscale Image

Output: Color Image

Results

Author's Method

Author's Method

Author's Method

Author's Method

Failures

Failures

Failures

Comparison Between Methods

Comparison

Method	RMSE
Grayscale (no colorization)	0.285
Welsh et al. [42]	0.353
Deshpande $et al.$ [7]	0.262
+ GT Scene	0.254
Our Method	0.211

Table 3: SUN-6. Comparison with competing methods.

Colorization for Image Segmentation

Initialization	Architecture	X	Y	C	mIU (%)
Classifier	VGG-16	✓	✓		64.0
Colorizer	VGG-16	\checkmark			50.2
Random	VGG-16				32.5
Classifier $[9, 30]$	AlexNet	✓	✓	✓	48.0
BiGAN [9]	AlexNet	✓		\checkmark	34.9
Inpainter [30]	AlexNet	\checkmark		\checkmark	29.7
Random [30]	AlexNet			✓	19.8

Table 6: VOC 2012 segmentation validation set. Pretraining uses ImageNet images (X), labels (Y). VOC 2012 images are in color (C).

Strengths and Weaknesses

• Strengths

- Best results: qualitative and quantitative
- Fully automated
 - Optional human interaction
- No hand-crafted features
- Weaknesses
 - Often undersaturated images
 - Trouble predicting background colors

Discussion Points

- Fix undersaturation
- Extend to video colorization
- Post-processing to remove artifacts
 - Edge-detector
 - Texture information