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Partial Matching

● Deformable Part Models allows parts of objects 
to shift around

● What happens when one of the parts is 
completely missing?

● What happens when the images are hacked to 
move parts of them around?



  

Source Image



  

Learned HOG Features from INRIA



  

INRIA Person Dataset Matches



  

Source Image



  

Modified Source Image



  

INRIA Person Dataset Matches



  

Bad Background = Bad Detection



  

Blocked Parts

● Take the list of part filter responses in a 
detection

● One by one, replace their area with black pixels
● Test intersection over union against ground 

truth
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Detection



  

1 Filter Blocked



  

3 Filters Blocked



  

Degradation (VOC 2010 Detector)
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0 Blocked Filters



  

1 Blocked Filters



  

2 Blocked Filters



  

3 Blocked Filters



  

Degradation (VOC 2007 Detector)
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1 Blocked Filter



  

2 Blocked Filters



  

3 Blocked Filters



  

Degradation (VOC 2007 Detector)



  

Blocked Filters

● DPM is great against this, especially with 
canonical views

● Shows robustness to occlusion



  

Random Window Shifts

● Window is shifted by random amount
● The pixels covered are moved to the gap left 

behind
● All pixel information is maintained



  

VOC 2010 Bicycle Detector



  

Ground Truth



  

No Shifts



  

One Shift



  

Static Parts to the Rescue



  

One Shift



  

Two Shifts



  

Three Shifts



  

Four Shifts



  

Does how far we shift affect 
performance?

Averaged across 30 trials!



  

10 10-Pixel Shifts

Ground 
truth



  

Does how many times we shift affect 
performance?



  

Does how many times we shift affect 
performance?



  

Window Shifts

● DPM is robust to small number of window shifts 
because some part filters still fire correctly

● More shifts give worse performance
● The shift distance does not have appreciable 

effect on the detection score loss



  

Partial Matching

● DPM is robust to object parts moving around
● It can also infer positions of hidden or missing 

object parts
● Sometimes, IoU can actually increase with 

occlusion



  

Outline

● Partial matching
● Non-maximum suppression
● Train image results
● Live demo



  

Size-Matched Image



  

Without NMS, N = 10
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With NMS, N = 3
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NMS Overlap

● 30 closely correlated matches are detected 
before the second person is detected

● 42 matches before third person is detected
● Repeated detections for similar objects rank 

similarly
● NMS helps highlight the weaker matches
● Asymmetric overlap metric allows good windows 

to subsume smaller windows that lie inside



  

Non-Maximum Supression

● Helps avoid duplicates
● Also helps let the weaker data show itself when 

a limit is imposed on the total number of 
matches
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Chicago Elevated Train



  

VOC 2007 Train Model



  

VOC 2007 Train Results, N = 1



  

Without NMS, N=30



  

Without NMS, N=30
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● Many different modes

● Overall high confusion

● Some lonesome 
outliers



  

Chicago Elevated Train

● Most detected windows contain mostly train
● No single canonical detection window - “lots of 

trains”
● No window captures the entire train
● No learned DPM for “train” is long enough to 

capture this shape
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Live Demo

● INRIA person dataset
● VOC 2010 dataset - “chair”
● Can we fool it?



  

Summary

● Tested matches with parts of objects missing
● Surveyed non-max suppression effects
● Results on train image: technically correct, but 

still did not capture entire object
● Girshick's library is mature and can be easily 

integrated into live application 
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● Original code available on GitHub: https://github.com/rbgirshick/voc-dpm
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Live Cam Examples



  

Input Image



  

VOC 2010 Person Detector



  

VOC 2010 Person Detector



  

Chair Detector



  

Chair Detector
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