Data-Driven 3D Voxel Patterns for Object Category Recognition

Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese

Adam Allevato April 6, 2016 CS381V: Visual Recognition, UT Austin

Outline

- Problem Statement
- Related Work
- Approach
 - Data Representation
 - Training
 - Testing
- Results
 - Examples
 - Quantitative
- Discussion

Problem Statement

How can we build a system that can **classify**, **locate**, and **orient occluded 3D** objects using **2D image** inputs?

Related Work

How can we build a system that can **classify**, **locate**, and **orient occluded 3D** objects using **2D image** inputs?

Method	Locate in 3D	Orient in 3D	Occlusion	2D Input
2D Detection	×	×	V	_
3D Pose Estimation	×	_	\	\
Point-Cloud Based Methods	V	V	_	×
This Paper: 3D Voxel Patterns	_	_	_	_

Deformable Part Models Felzenswalb et al. 2010

Face Detector Viola and Jones 2004

Related Work: 3D Pose Estimation

3D²PM Pepik et al. 2012

3D Category Classification Savarese and Fei-Fei 2007

Related Work: Point-Cloud Based Methods

Clustered Viewpoint Feature Histogram Aldoma 2011

Hashed 3D Voting Hodaň et al. 2015

Data-Driven 3D Voxel Patterns

Approach: Data Representation

• **3D Voxel Patterns** (3DVPs)

- Capture "patterns of visibility"
- Composed of four parts:
 - 2D object image
 - 2D segmentation mask
 - 3D voxel model
 - Metadata: pose, 3D model
- Voxels and pixels can be
 - Visible (green)
 - Occluded (red)
 - Truncated (cyan)
 - Self-occluded (blue)

1. Align 2D Images with 3D CAD Models

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012

2. Building Voxel Exemplars: Baby 3DVPs

3. Discovering 3D Voxel Patterns

- First, generate mirror-image voxel patterns to increase training set
- Similarity metric for clustering:

$$\begin{split} s(\mathbf{x_1}, \mathbf{x_2}) &= \frac{|\mathcal{S}|}{N^3} \sum_{i=1}^{N^3} \mathbb{1}(x_1^i = x_2^i) \cdot w(x_1^i), \\ \text{s.t., } \sum_{i=0}^{|\mathcal{S}| - 1} w(i) &= 1, \end{split}$$

- Flexibility provided by w(i), but authors use $w(i) = \{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$.
- Gives a "flat" similarity: evaluates agreement between voxel labels

3. Discovering 3D Voxel Patterns

4. Training 3D Voxel Pattern Detectors

4. Training 3D Voxel Pattern Detectors

• Train a detector for each 3DVP using Aggregated Channel Features (ACF): Blur the image, then split into channels and downsample 4x

- Channels in Ω : gradients, HoG features, and LUV channels.
- Use boosting on pixels selected from all channels at once to build discriminative trees
- Realtime algorithm developed in 2014, over 200 citations

Approach: Testing 1. Apply 3DVP detectors 2D detection Input 2D image 2. Transfer meta-data 3. Occlusion reasoning 4. Backproject to 3D -4 -6 -8 4 2 0 **3D** localization 2D segmentation

1. Apply 3DVP Detectors

Testing images are 2D only

2. Collect and Apply Metadata

2. Collect and Apply Metadata

$$E = \sum_{i} (\psi_{\text{detection_score}} + \psi_{\text{truncation}}) + \sum_{ij} \psi_{\text{occlusion}}$$

Adam Allevato | 2016-06-04 | CS381V | UT Austin

4. 3D Localization

At this point we also assign a single CAD model to each detection based on the closest match from clustering.

Results

Car Detection and Orientation on KITTI

	Object Detection (AP)			Object Detection and Orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard	
ACF [1]	55.89	54.77	42.98	N/A	N/A	N/A	
DPM [2]	71.19	62.16	48.43	67.27	55.77	43.59	
DPM-VOC+VP [3]	74.95	64.71	48.76	72.28	61.84	46.54	
OC-DPM [4]	74.94	65.95	53.86	73.50	64.42	52.40	
SubCat [5]	81.94	66.32	51.10	80.92	64.94	50.03	
AOG [6]	84.36	71.88	59.27	43.81	38.21	31.53	
SubCat [7]	84.14	75.46	59.71	83.41	74.42	58.83	
Regionlets [8]	84.75	76.45	59.70	N/A	N/A	N/A	
Ours NMS	84.81	73.02	63.22	84.31	71.99	62.11	
Ours Occlusion	87.46	75.77	65.38	86.92	74.59	64.11	

[1] P. Dolla'r, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

[3] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.

[4] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013.

[5] E. Ohn-Bar and M. M. Trivedi. Fast and robust object detection using visual subcategories. In CVPRW, 2014.

[6] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV, 2014.

[7] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.

[8] X.Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

Analysis

The Good

- State-of-the-art results
- Explicitly models occlusion
- Data driven approach
- Can perform segmentation

The Bad

- Complicated training pipeline
- Requires CAD models of objects
- Requires 3D data for training
- Little to no work on classification (sedans vs. vans)
- ?

Uses handcrafted features How long does it take?

Discussion

- Will we ever not need 3D data for training?
- Does this work with deformable objects?
 - Does it need to?
- Possible extension: extend to more diverse classes
 - 227 different detectors just for "car"
 - What if we want to detect 20 different objects?
 - What kind of grouping would need to be done?

References

- Xiang, Yu, et al. "Data-driven 3d voxel patterns for object category recognition." *Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on*. IEEE, 2015.
- Dollár, Piotr, et al. "Fast feature pyramids for object detection." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 36.8 (2014): 1532-1545.
- Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark suite." *Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.* IEEE, 2012.