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Why build a segment-phrase table?
Many reasons!
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Why build a segment-phrase table?
Relative similarity

Is “cat standing up” closer to “bear standing up” or “deer standing up”?
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Why build a segment-phrase table?
Semantic segmentation
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Considerations in building segment-phrase table
Human annotators?



Considerations in building segment-phrase table
Human annotators?

Too expensive to obtain human-labeled pixel labels

Opt instead for weakly-supervised approach instead



How do they build it?
Three components:

1. Train a webly-supervised detection model for each phrase
2. Model each phrase as a deformable parts model
3. Learn segmentation model for each part
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How do they build it?
2.     Model each phrase as a deformable parts model 

Concerned about intra-class variation?
Key insight: parts of phrases have low intra-class variation

horse running horse



How do they build it?
3.     Learn segmentation model              for each part

Model superpixels with GMM and solve with EM and Graphcut

Rough initialization with Grabcut and HOG root filter



How do they build it?
3.     Learn segmentation model              for each part

Model superpixels with GMM and solve with EM and Graphcut

Rough initialization with Grabcut and HOG root filter

“horse running right”



Segment-phrase table built
Results:

For each phrase, we have learned:

● Bounding box detector
● Segmentation model for each part

What can we do now?

Phrases              Segments

Image credit: Izadinia et al.



Semantic segmentation
Example: “horse”

Image credit: Izadinia et al.
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Semantic segmentation using linguistic constraints
Example: “horse”

Image credit: Izadinia et al.



Semantic segmentation using linguistic constraints
Example: “horse” standing
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is a valid description, then phrase Y is also a valid description
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Paraphrasing
Are phrase X and phrase Y paraphrases of each other?

Strategy: compute X ⊨ Y and Y ⊨ X and say they’re paraphrases if they’re close
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Relative Semantic Similarity
Is phrase X closer to phrase Y or phrase Z?

Strategy: compute X ⊨ Y and X ⊨ Z and pick highest number of the two
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Evaluation - Takeaways

Semantic segmentation state of the art or near it

Highlights tradeoffs between unsupervised approach on large data and supervised 
approaches on small dataset

Linguistic constraints help semantic segmentation

SPT approach beats language-only and vision-only baselines on entailment, 
paraphrasing, and relative similarity



Discussion



Discussion
Leverage supervision

Variable number of part models per phrase

Larger evaluation dataset

Comparison against state-of-the-art entailment and paraphrase systems


