Unsupervised learning of visual representations using videos

X. Wang and A. Gupta
ICCV 2015

Experiment presentation by Ashish Bora
Motivation

- Supervised methods work very well
- But labels are expensive
- Lot of unlabeled data is available
- Can we learn from this huge resource of unlabeled data?

Approach

- Learn a vector representation for image patches in a video
 - Similar patches should be close (cosine similarity)
 - Random patches should be far

- Ranking Loss

\[
\min \frac{\lambda}{2} \| W \|_2^2 + \sum_{i=1}^{N} \max\{0, D(X_i, X_i^+) - D(X_i, X_i^-) + M\}
\]

- CNN architecture similar to AlexNet

Image from: http://www.cs.cmu.edu/~xiaolonw/unsupervise.html
How to get patches?

Positive pairs

- Tracking across time provides self-supervision
- Get the bounding box for first image using SURF with Improved Dense Trajectories.

Negative Pairs

- Random sampling
- Hard-negatives for better training
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
tSNE - a quick introduction

- tSNE = t-Distributed Stochastic Neighbor Embedding
- Want to visualize a set of data-points in n-dimensional space
- Visualization beyond 3-D is hard
- tSNE: A method to embed each datapoint to small number of dimensions (2 or 3) such that small/local distances are preserved
- Contrast: PCA preserves large distances
- For more details, see: https://www.youtube.com/watch?v=RJVL80Gg3IA
tSNE on hw2 images

- Color similarity
- Backgrounds
- Black and white images

Image generated with code from: http://cs.stanford.edu/people/karpathy/cnnembed
tSNE Results
tSNE Results
tSNE on Stanford40

- Learned from videos
- Do we get clusters specific to activities?

Results

- Most clusters are based on background and objects (bikes, boats) rather than activity

http://vision.stanford.edu/Datasets/40actions.html

Image generated with code from: http://cs.stanford.edu/people/karpathy/cnnembed/
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
Input variation

- Input is 227 x 227, but output is only 1024 dimensional
- Some things must be thrown away
- Illumination, saturation, rotation unimportant to recognize images that co-occur, which is the objective for unsupervised phase.
- Verify that these invariances are learned
Input variation - illumination

2500 images from hw2
Input variation - illumination
Input variation - saturation

2500 images from hw2
Input variation - saturation
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
Savings in labeling effort

- We want very good system even if it is expensive to collect labels
- If we finetune from the network in this paper, can we do away with less number of training examples?

<table>
<thead>
<tr>
<th></th>
<th>Performance</th>
<th>Comparison</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASCAL VOC</td>
<td>52% mAP</td>
<td>RCNN with AlexNet</td>
<td>54.4% mAP</td>
</tr>
<tr>
<td>hw2 problem</td>
<td>54.1% acc</td>
<td>Best non-finetuned model from hw2</td>
<td>52.8% acc</td>
</tr>
<tr>
<td>ImageNet - 10</td>
<td>4.9% acc</td>
<td>AlexNet - 10</td>
<td>0.15% acc</td>
</tr>
<tr>
<td>ImageNet - 100</td>
<td>15% acc</td>
<td>AlexNet - 14000</td>
<td>62.5% acc</td>
</tr>
</tbody>
</table>
Savings in labeling effort - discussion

- Unsupervised pretraining avoids overfitting
- 15% >> 0.1% random chance
- Tremendous in class variability in ImageNet. 100 images not sufficient to capture all of it
- PASCAL VOC results is for bounding boxes. ImageNet images can be the whole scene.
- PASCAL VOC has more than 100 images per class
- Should try with images per class
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
Change point detection

- Tracked patches from same video were used in paper
- Can create bias towards giving same representation to objects that appear together
- This experiment tests whether we can detect change points in the same video
- Very simple model: Magnitude of difference of embedding vectors of consecutive frames
Video 2
Result
Change point detection - discussion

As compared to embedding vector method, HoG baseline:

- gives larger changes when there is no visual change [start of car video]
- is more sensitive to occlusions [eg. white shirt entering]
- is more noisy even in stable sections of video
Experiments - Outline

- tSNE visualization
- Effect of input variation
- Quantifying savings in labeling efforts
- Change point detection
- Relationship learning
- Discussion
Relationship Learning

- Cosine similarity metric used during learning: similar to word2vec
- In word2vec: king - man + woman ≈ queen
 Do we have a similar thing here?
- Unlike word2vec, context is not explicitly provided but enters indirectly through temporal co-occurrence
- Idea: Use activity as context
 Example: cat_jumping - cat + dog ≈ dog_jumping?
Relationship Learning: Small experiment

Many cat images

Many dog images

mean cat

mean dog

Corpus

cat jumping

Retrieve closest

Images taken from Google Images
Relationship Learning Results - top 3

- Should we be impressed?
 - No apparent similarity apart from similar action pose
 - The second image has very similar texture to first => honest mistake?

- Caveats
 - Single data point
 - Need a quantitative baseline

Images taken from Google Images
Discussion

- This representation does not seem to capture activity very well. Possible solution: Learn embedding for video tubes instead of frames.
- [Ramanathan et al] consider the whole image, while this one tracks patches across frames. Do we learn better representations with this?
- If this network is largely trained on moving objects, it can have little knowledge about the background or static scenes. This might affect its performance: tSNE plots seem to indicate otherwise.
- Is most of the work in supervised part while finetuning? Best unsupervised was 44%, unsupervised learns good prior for finetuning.
- Can we use audio to improve unsupervised learning?