Learning video saliency from human gaze using candidate selection

Rudoy, Goldman, Shechtman, Zelnik-Manor
CVPR 2013

Paper presentation by Ashish Bora
Outline

- What is saliency?
- Image vs video
- Candidates : Motivation
- Candidate extraction
- Gaze Dynamics : model and learning
- Evaluation
- Discussion
What is saliency?

- Captures where people look
- Distribution over all the pixels in the image or video frame
- Color, high contrast and human subjects are known factors

http://www.celebrityendorsementads.com
Image vs video saliency

- Shorter time - typically single most salient point (sparsity)
- Continuity across frames
- Motion cues

Image credit: Rudoy et al.
How to use this?

● Sparse saliency in video
 ○ Redundant to computer saliency at all pixels
 ○ Solution: inspect a few promising candidates

● Continuity in gaze
 ○ Use preceding frames to model gaze transitions
Candidate requirements

- **Salient**

- **Diffused**: Salient area rather than a point
 - Represented as a gaussian blob (mean, covariance matrix)

- **Versatile**: incorporate broad range of factors that cause saliency
 - Static: local contrast or uniqueness
 - Motion: inter-frame dependence
 - Semantic: arise from what is important for humans

- **Sparse**: few per frame
Candidate extraction pipeline: Static

1. Frame
2. GBVS
3. Sample many points
4. Mean shift clustering
5. Fit gaussian blobs
6. Candidates

Image credit: http://www.fast-lab.org/resources/meanshift-blk-sm.png
http://www.vision.caltech.edu/~harel/share/gbvs.php
Static candidates: example

Image credit: Rudoy et al
Discussion

Why not fit a mixture of gaussians directly?

- Rationale in paper: Sampling followed by mean shift fitting gives more importance to capturing the peaks
- Is this because more points are sampled near the peaks and we weigh each point equally?
Candidate extraction pipeline: Motion

1. Consecutive frames
2. Optical Flow
3. Magnitude and threshold
4. DoG filtering
5. Sample many points
6. Mean shift clustering
7. Fit gaussian blobs
8. Candidates

Images cropped from: http://cs.brown.edu/courses/csci1290/2011/results/final/psastras/images/sequence0/save_0.png
http://www.liden.cc/Visionary/Images/DIFFERENCE_OF_GAUSSIANS.GIF
Motion candidates : example

Image credit : Rudoy et al
Candidate extraction pipeline: Semantic

Frame ➔ Centre Blob ➔ Face Detector ➔ Poselet detector ➔ Candidates
Semantic candidates: example
Modeling gaze dynamics

- $s_i =$ source location
- $d =$ destination candidate
- Learn transition probability $P(d|s_i)$
Modeling gaze dynamics

- \[P(s_i) = \frac{Sal(s_i)}{\sum_{i \in S} Sal(s_i)} \]

- Use \(P(s_i) \) as a prior to get \(P(d) \)

\[P(d) = \sum_{i \in S} P(d|s_i) \cdot P(s_i) \]

- Combine destination gaussians with \(P(d) \)
Learning $P(d|s_i)$: Features

Only destination and interframe features are used

- Local neighborhood contrast

\[
C_l = \frac{I_{n}^{\text{max}} - I_{n}^{\text{min}}}{(I_{n}^{\text{max}} + I_{n}^{\text{min}})} \cdot C_g
\]

where

\[
C_g = \frac{I^{\text{max}} - I^{\text{min}}}{I^{\text{max}} + I^{\text{min}}}
\]

Equation credit: Rudoy et al
Learning $P(d|s_i)$: Features (contd)

Only destination and interframe features are used

- Mean GBVS of the candidate neighborhood
- Mean of Difference-of-Gaussians (DoG) of
 - Vertical component of the optical flow
 - Horizontal components of the optical flow
 - Magnitude of the optical flow in local neighborhood of the destination candidate
- Face and person detection scores
- Discrete labels: motion, saliency (?), face, body, center, and the size (?)
- Euclidean distance from the location of d to the center of the frame
Discussion: unclear points

- It seems no feature depends on source location. In that case $P(d|s_i)$ will be independent of s_i. That would mean $P(d)$ is independent of $P(s_i)$. This is like modeling each frame independently with optical flow features.

- Discrete labels for saliency and size.
Discussion

- Non-human semantic candidates?
 - not handled

- Extra features that can be useful
 - General: Color and depth, SIFT, HOG, CNN features
 - Task specific
 - non-human semantic candidates (for example text, animals)
 - activity based candidates
 - memorability of image regions
Learning $P(d|s_i)$: Dataset

- DIEM (Dynamic Images and Eye Movements) dataset [1]
- 84 videos with gaze tracks of about 50 participants per video

[1] https://thediemproject.wordpress.com/
Learning $P(d|s_i)$: Get relevant frames

- (Potentially) positive samples
 - Find all the scene cuts
 - Source frame is the frame just before the cut
 - Destination is 15 frames later

- Negative samples
 - Pairs of frames from the middle of every scene 15 frames apart
Learning $P(d|s_i)$: Get source locations

- Ground truth human fixations
- Smoothing
- Thresholding (keep top 3%)
- Find Centres (foci)
- Source locations

Image credit: Rudoy et al
Learning $P(d|s_i)$

- Take all pairs of source locations and destination candidates for training set

- Positive labels:
 - Pairs with centre of d “near” a focus of the destination frame

- Negative labels:
 - If centre of d is “far” from every focus of destination frame

- Training
 - Random Forest classifier
Labeling: example

Image credit: Rudoy et al
Discussion

● Why Random Forest?
 ○ No discussion in paper
 ○ Other classifiers/models that can be used
 ■ XGBoost
 ■ LSTM to model long term dependencies
Results : video
Experiments: How good are the candidates?

Candidates cover most human fixations

Image credit: Rudoy et al
Experiments: How good are the candidates?

Image credit: Rudoy et al
Experiments: Saliency metrics

- AUC ROC to compute the similarity between human fixations and the predicted saliency map
- Chi-squared distance between histograms

\[d(x, y) = \frac{1}{2} \sum_i \frac{(x_i - y_i)^2}{x_i + y_i} \]

Equation credit: http://mathoverflow.net/questions/103115/distance-metric-between-two-sample-distributions-histograms
Image credit: https://upload.wikimedia.org/wikipedia/commons/6/6b/Roccurves.png
Results

Image credit: Rudoy et al.
Discussion

- In paper authors mention that AUC considers the saliency results only at the locations of the ground truth fixation points.
- This will only give true positives and false negatives.
- AUC ROC needs true negative and false positives as well. How is AUC computed without them?
Ablation results

<table>
<thead>
<tr>
<th></th>
<th>All cues</th>
<th>No motion cues</th>
<th>No inter-frame cues</th>
<th>No semantic cues</th>
<th>No static cues</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>0.313</td>
<td>0.322</td>
<td>0.326</td>
<td>0.347</td>
<td>0.385</td>
</tr>
</tbody>
</table>

- Dropping static or semantic cues results in big drop
More discussion points

● Why 15 frames?
 This parameter is based on typical time taken by human subjects to adjust gaze on a new image.
● Across scene-cuts, the content can change arbitrarily. Use in-shot transitions?
● The model needs dataset with human gaze and video to train
● Why does dense estimation (without candidate selection) give lower accuracy?
 Not clearly mentioned in the paper. Possible reason: candidate-based model is able to model the transition probabilities better. The dense model gets confused due to large number of candidates.
More discussion points

- How can we capture gaze transitions within a shot?
- Relation between saliency and memorability
 We can reasonably expect saliency and memorability to be correlated.
- What is the breakdown between failure cases for this model?
- Besides DIEM and CRCNS, are there other datasets that could be used to experiment video saliency
 - http://saliency.mit.edu/datasets.html
- Saliency to evaluate memorability?