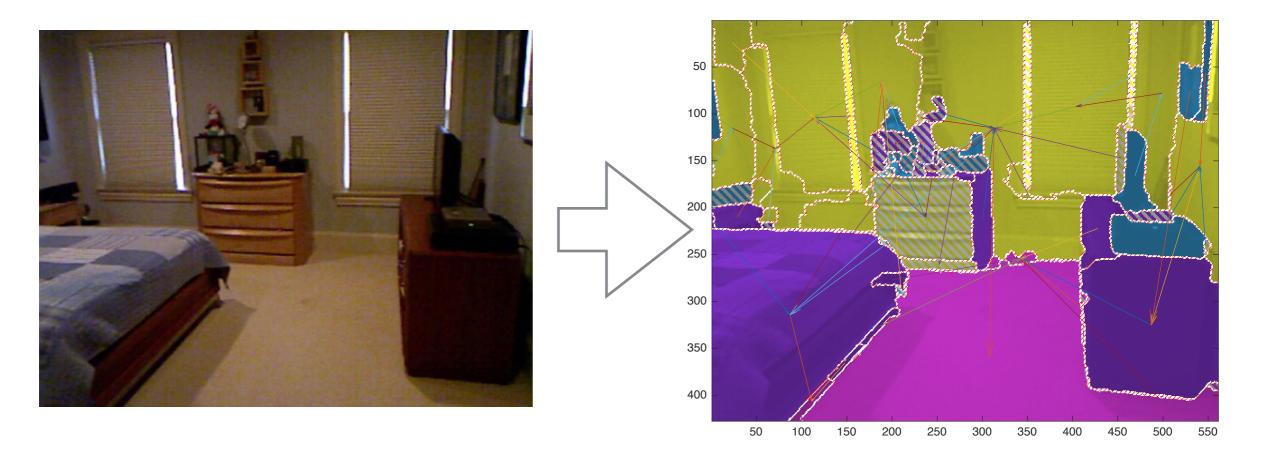
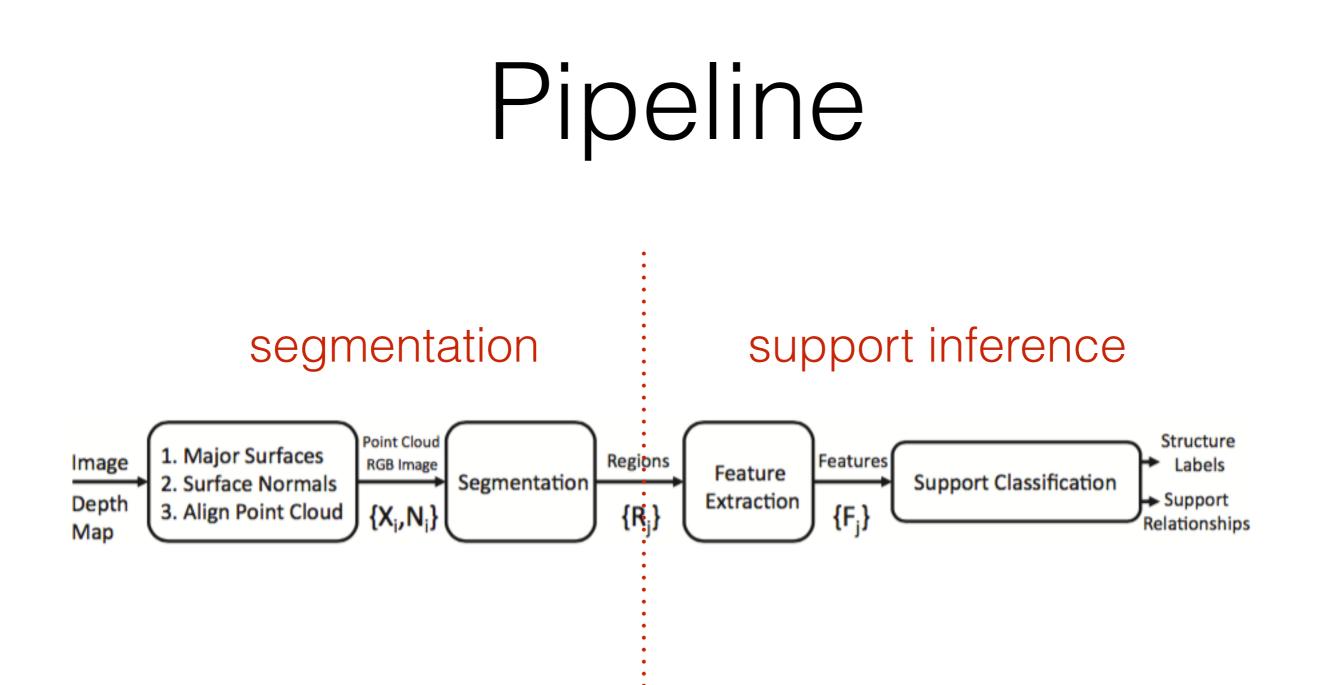
CS381V Experiment Presentation

Chun-Chen Kuo

The Paper

 Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. ECCV 2012.





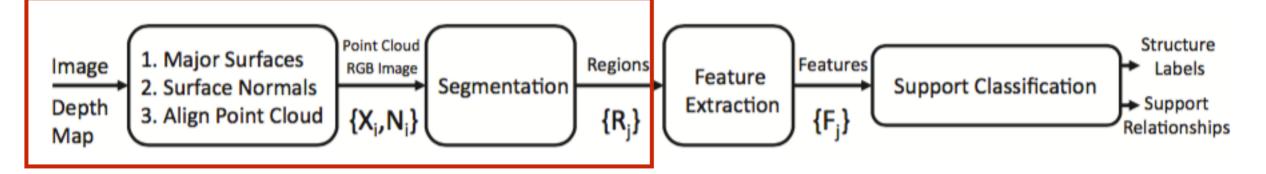
Outline

- Run the segmentation pipeline
- Experiment on the segmentation pipeline
- Run the support inference pipeline
- Address strength and weakness

Outline

- Run the segmentation pipeline
- Experiment on the segmentation pipeline
- Run the support inference pipeline
- Address strength and weakness

Segmentation Pipeline



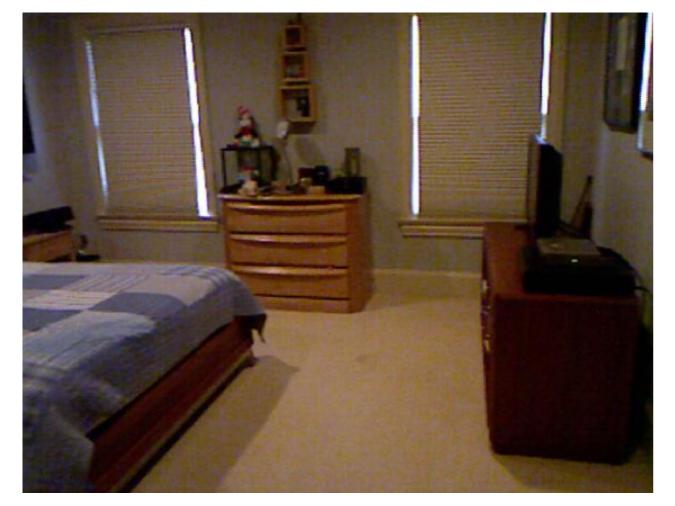
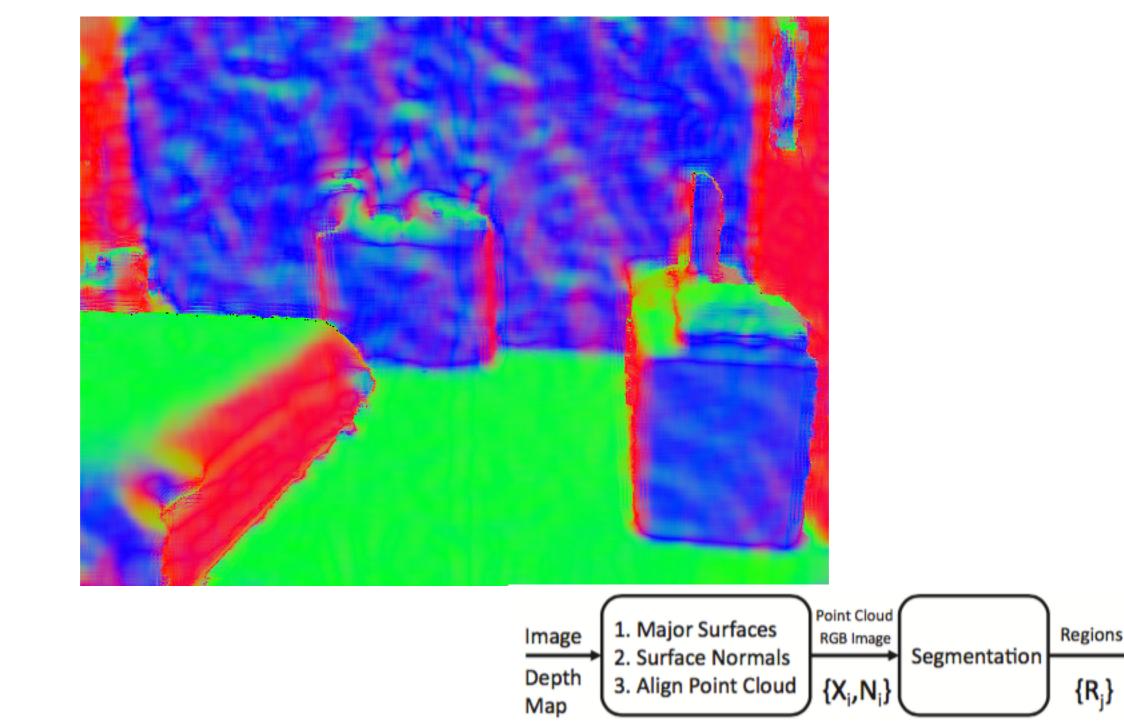


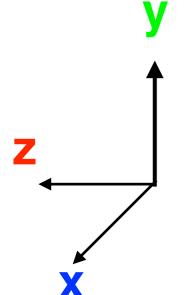
Image920, RGB

Depth Map

Compute Surface Normal



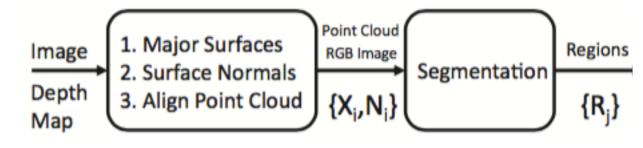
 $\{R_i\}$



Align to room coordinates

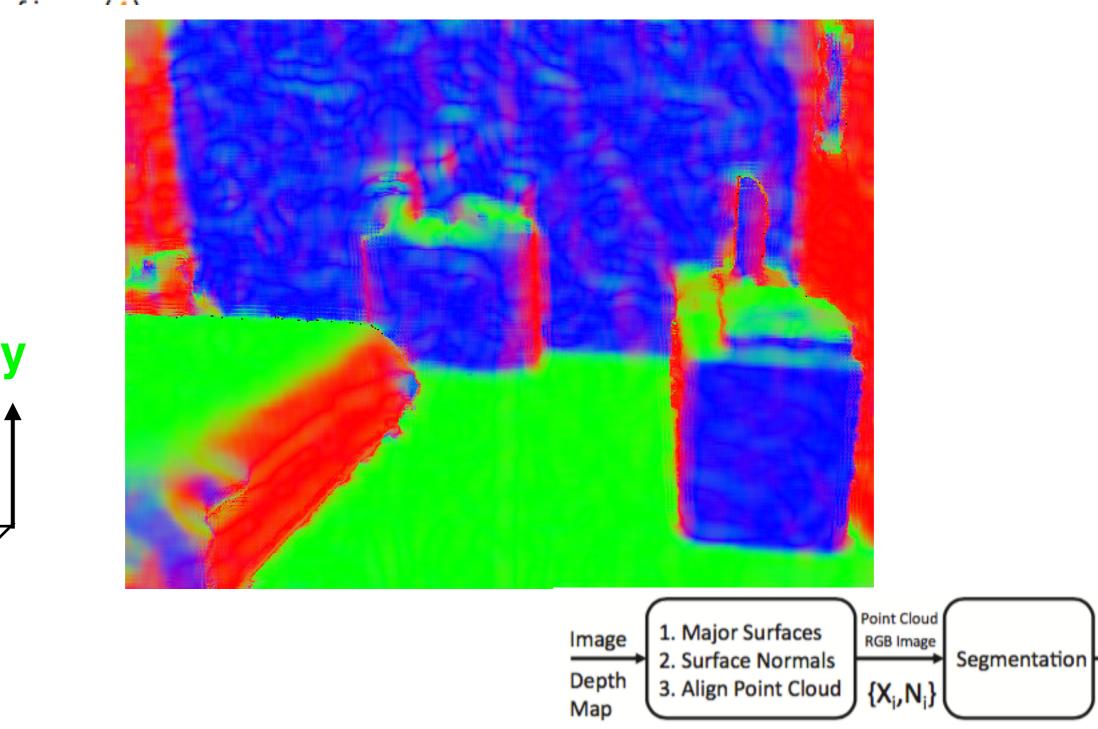
$$egin{aligned} S(v_1,v_2,v_3) &= \sum_{j=1}^{3^*} [rac{w_N}{N_N} \sum_i^{N_N} \exp(rac{-(\mathbf{N}_i \cdot \mathbf{v}_j)^2}{\sigma^2}) + rac{w_L}{N_L} \sum_i^{N_L} \exp(-rac{(\mathbf{L}_i \cdot \mathbf{v}_j)^2}{\sigma^2})] \ R &= [\mathbf{v}_X \quad \mathbf{v}_Y \quad \mathbf{v}_Z] \end{aligned}$$

_								
	planeData.R							
	1	2	3					
1	0.9720	-0.0313	-0.2330					
2	-0.0256	0.9711	-0.2373					
3	0.2337	0.2366	0.9431					



Aligned Surface Normal

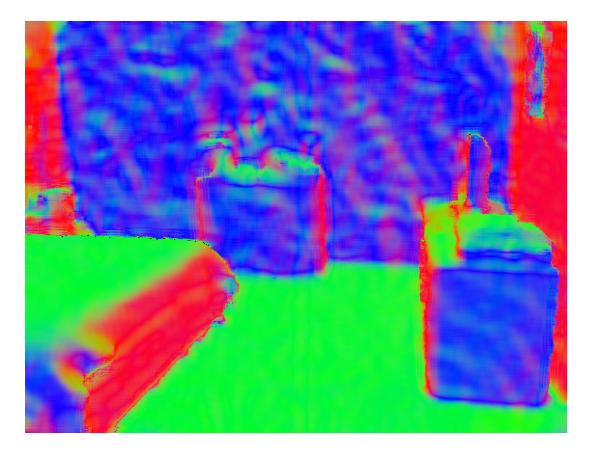
visNormals = reshape(planeData.normals * planeData.R', [sz(1) sz(2) 3]);

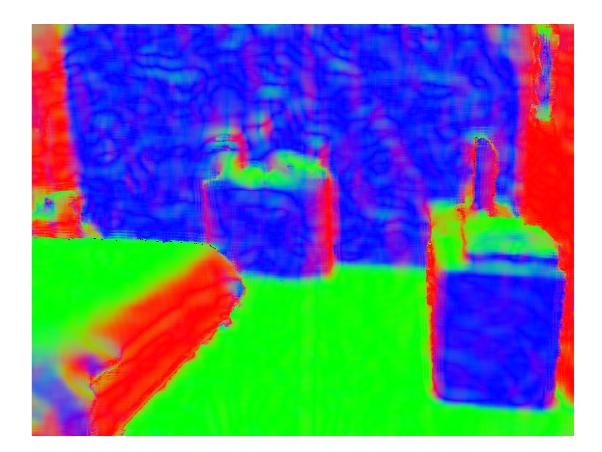


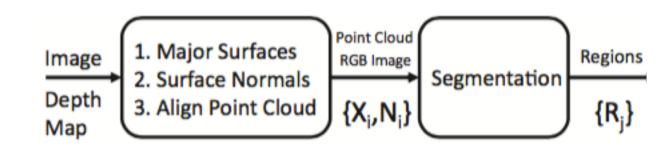
Regions

 $\{R_i\}$

After Alignment







Find Major Planes by RANSAC

	planes 🗶			
	9x4 double			
	1	2	3	4
1	0.2454	0.1918	0.9503	-4.2327
2	0.0384	-0.9718	0.2327	-1.4294
3	0.1631	0.2710	0.9487	-2.1915
4	0.9681	-0.0396	-0.2475	1.2939
5	0.0164	-0.9723	0.2333	-0.8234
6	0.9692	-0.0050	-0.2461	-0.6685
7	-0.2857	-0.2504	-0.9250	3.7373
8	-0.9197	0.0027	0.3925	-4.0064
9	0.1991	0.2986	-0.9334	2.0293
		1	1	i

Depth

Map

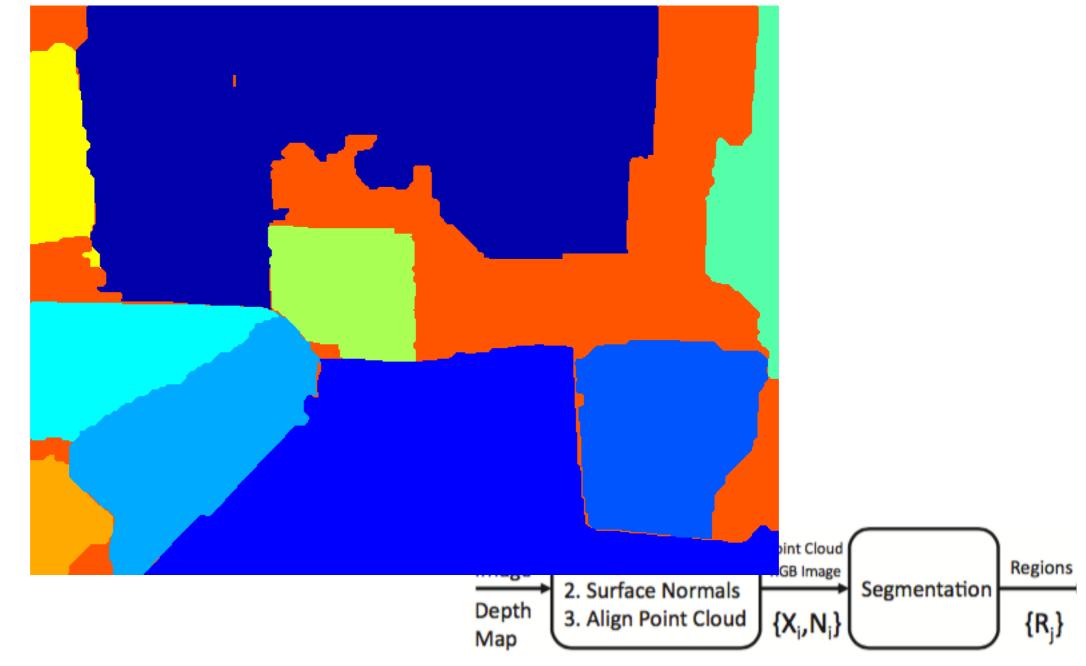
3. Align Point Cloud

 ${X_i, N_i}$

 $\{R_i\}$

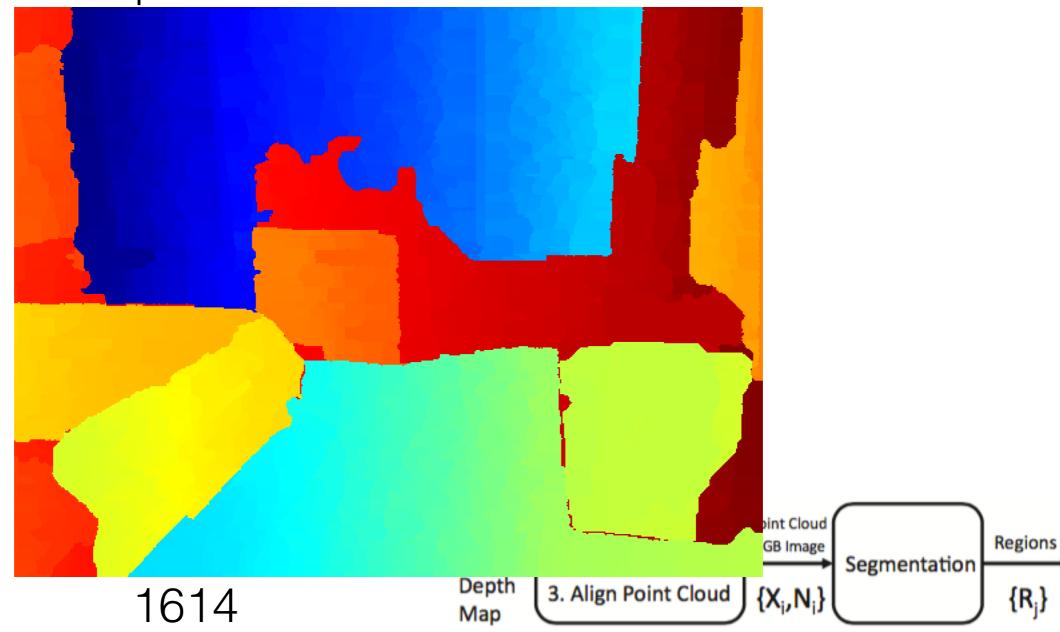
Reassign Pixels to Planes

$$E(extbf{data}, extbf{y}) = lpha_i \left[\left| \sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$



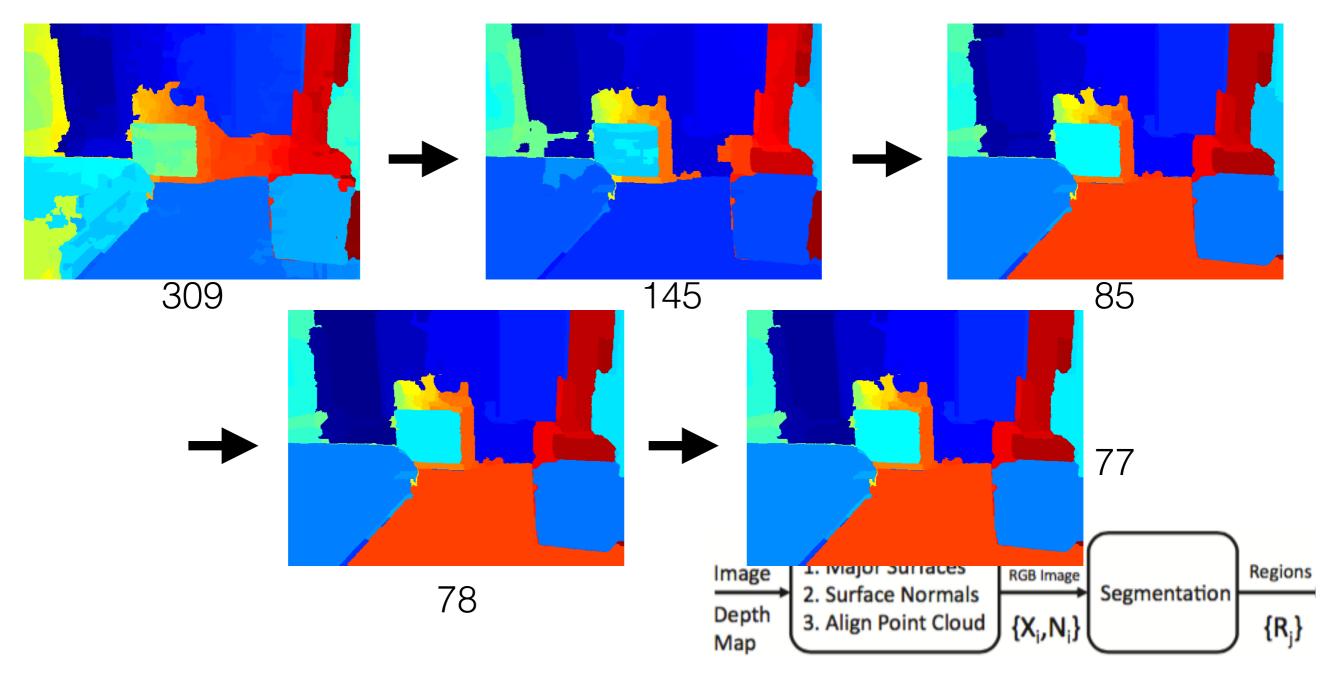
Watershed Segmentation

 Force the over-segmentation to be consistent with the previous planes



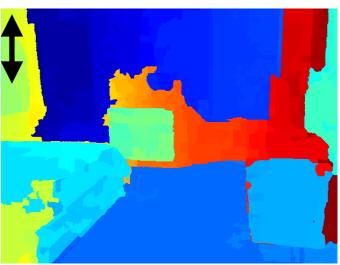
Hierarchical Grouping

• Bottom-up grouping by boundary classifier (Logistic regression AdaBoost) $P(y_i \neq y_j | \mathbf{x}_{ij}^s)$



AdaBoost Decision Tree

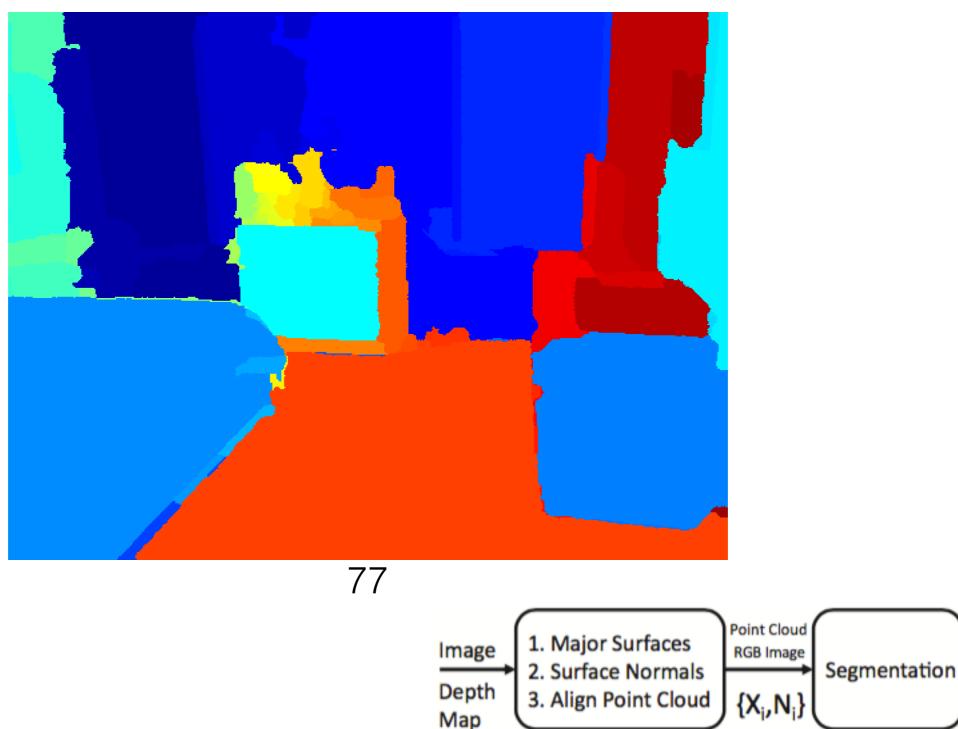
 $\frac{\mathbf{P}(y_i \neq y_j | \mathbf{x}_{ij}^s)}{\text{merge}?}$



- Reweigh misclassified regions
- Optimize new tree with reweighed regions
- Score the tree
 - Weighted sum over all trees optimized in each iteration

$$T(x_i) = \sum \alpha_m T_m(x_i)$$

Final Regions



Regions

 $\{R_j\}$

Ground truth

Outline

- Run the segmentation pipeline
- Experiment on the segmentation pipeline
- Run the support inference pipeline
- Address strength and weakness

Experiment on Segmentation Pipeline

- NYU Depth Dataset V2
- Images 909~1200
- Assign pixels to major planes
- AdaBoost decision tree as boundary classifier

Hypothesis

 The trade-off between matching to 3D values, normals, and gradient smoothing

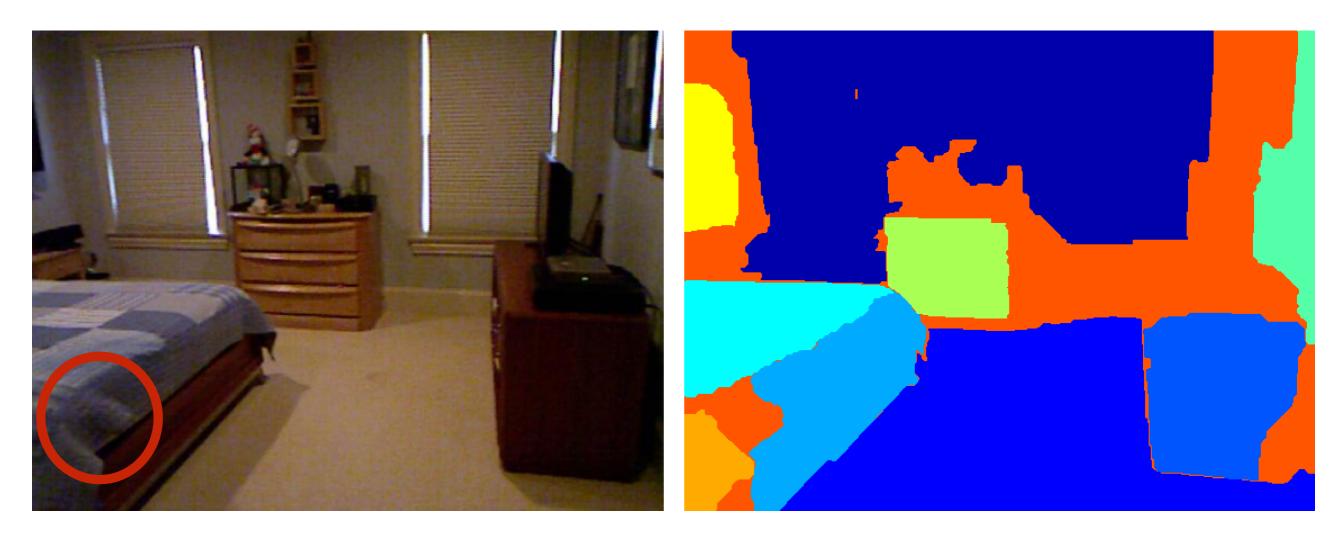
$$E(extbf{data}, extbf{y}) = lpha_i \left[\sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$

- If alpha is small, neighbor pixels with similar RGB tend to be assigned to a same plane
- If alpha is large, match pixels to planes based on 3D points and normals, regardless gradient smoothing

Result of Plane Labeling

$$E(extbf{data}, extbf{y}) = lpha_i \left[\sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i, j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$

alpha=0



Result of Plane Labeling

$$E(extbf{data}, extbf{y}) = lpha_i \left[\sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$

alpha=2500

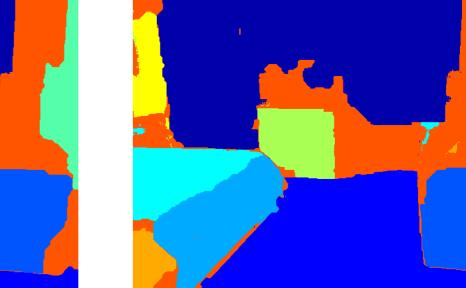
Result of Plane Labeling

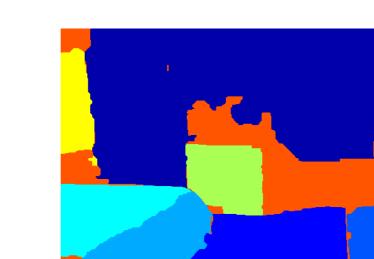
$$E(extbf{data}, extbf{y}) = lpha_i \left[\sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$

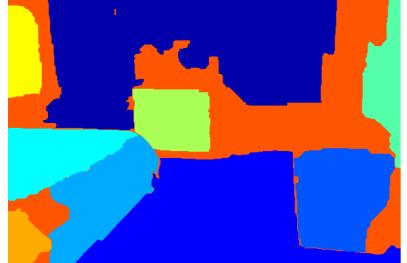
alpha=0.25

Result of Plane Labeling

$$E(\text{data}, \mathbf{y}) = \alpha_i \left[\sum_i f_{3d}(\mathbf{X}_i, y_i) + f_{norm}(\mathbf{N}_i, y_i) \right] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, \mathbf{I})$$







Segmentation Score

alpha=0.25e-12	alpha=0.25	alpha=2.5	
Results:	Results:	Results:	
Stage 1:	Stage 1:	Stage 1:	
Weighted: Train=41.8 Test=40.1	Weighted: Train=41.3 Test=39.7	Weighted: Train=41.3 Test=39.5	
Unweighted: Train=38.9 Test=38.5	Unweighted: Train=38.9 Test=38.7	Unweighted: Train=37.9 Test=37.7	
Stage 2:	Stage 2:	Stage 2:	
Weighted: Train=59.8 Test=56.4	Weighted: Train=60.3 Test=57.4	Weighted: Train=59.5 Test=57.0	
Unweighted: Train=49.9 Test=48.0	Unweighted: Train=50.2 Test=49.1	Unweighted: Train=48.8 Test=47.9	
Stage 3:	Stage 3:	Stage 3:	
Weighted: Train=66.7 Test=61.9	Weighted: Train=67.4 Test=62.3	Weighted: Train=66.3 Test=62.2	
Unweighted: Train=53.5 Test=50.2	Unweighted: Train=53.5 Test=50.1	Unweighted: Train=52.7 Test=49.5	
Stage 4:	Stage 4:	Stage 4:	
Weighted: Train=67.8 Test=62.7	Weighted: Train=68.3 Test=62.8	Weighted: Train=67.6 Test=63.2	
Unweighted: Train=53.8 Test=50.1	Unweighted: Train=53.9 Test=50.0	Unweighted: Train=53.2 Test=49.4	
Stage 5:	Stage 5:	Stage 5:	
Weighted: Train=68.4 Test=63.0	Weighted: Train=68.8 Test=63.2	Weighted: Train=68.0 Test=63.5	
Unweighted: Train=54.0 Test=50.1	Unweighted: Train=54.1 Test=50.0	Unweighted: Train=53.1 Test=49.3	

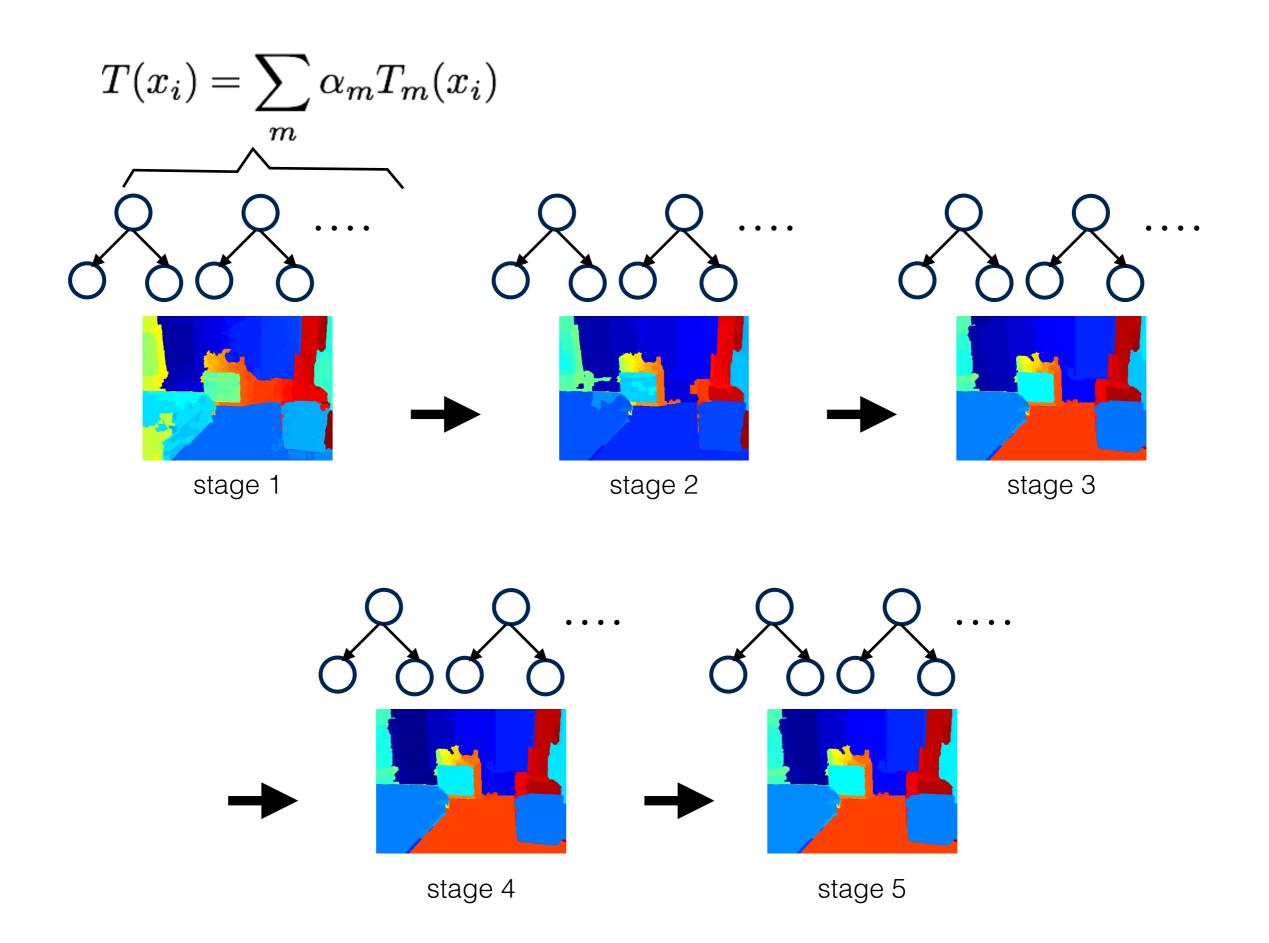
$$E(extbf{data}, extbf{y}) = lpha_i \left[\sum_i f_{3d}(extbf{X}_i, y_i) + f_{norm}(extbf{N}_i, y_i)
ight] + \sum_{i,j \in \mathcal{N}_8} f_{pair}(y_i, y_j, extbf{I})$$

Hypothesis

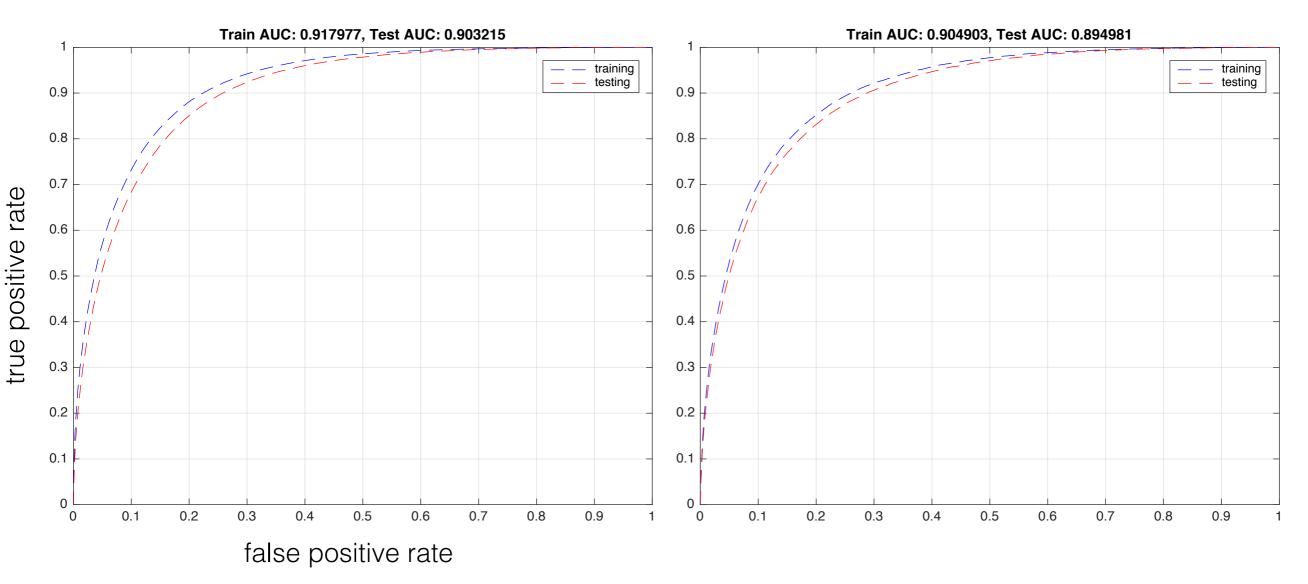
 Number of iteration of an AdaBoost decision forest boundary classifier (underfit vs. overfit)

$$T(x_i) = \sum_m \alpha_m T_m(x_i)$$

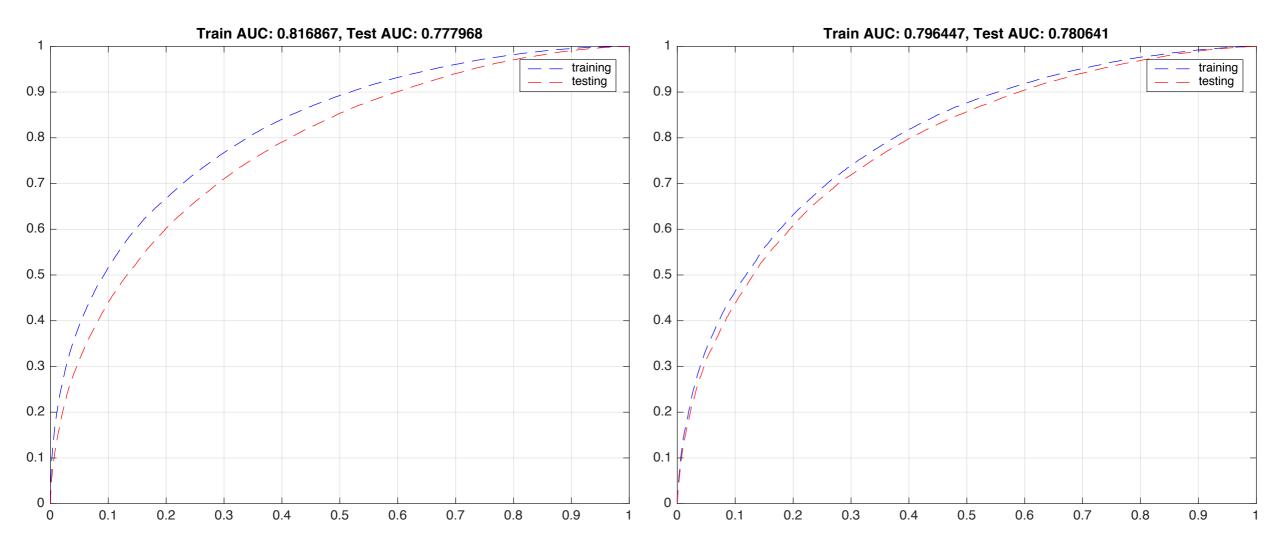
- At higher stage, the number of training example(boundary) decreases, causing lower accuracy and overfitting
- Accuracy at lower stage is more important because of error propagation



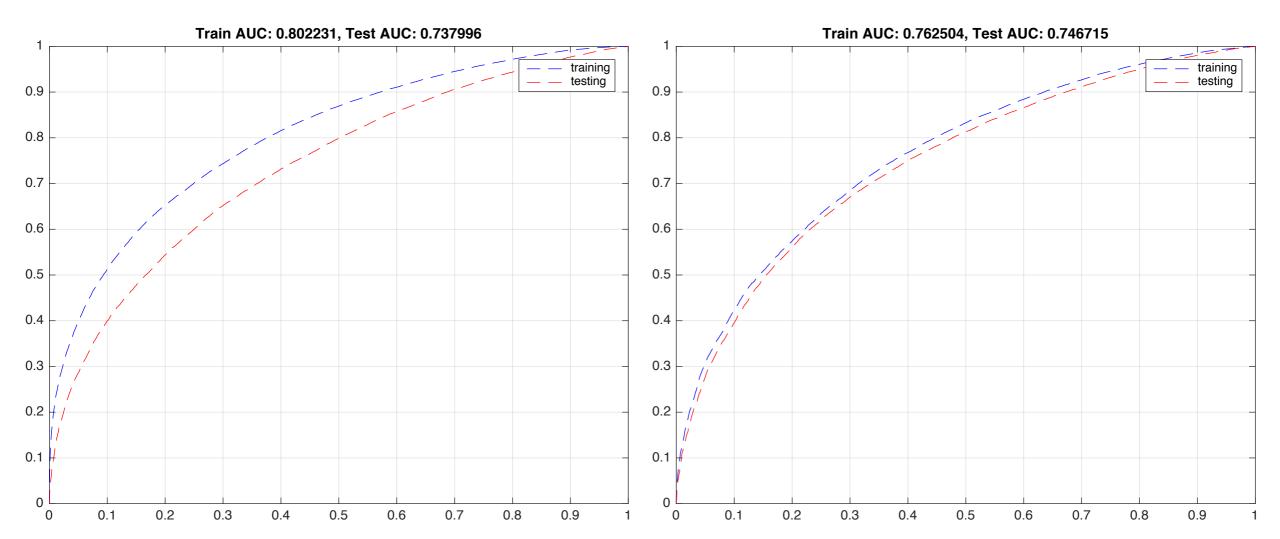
• iteration = 30



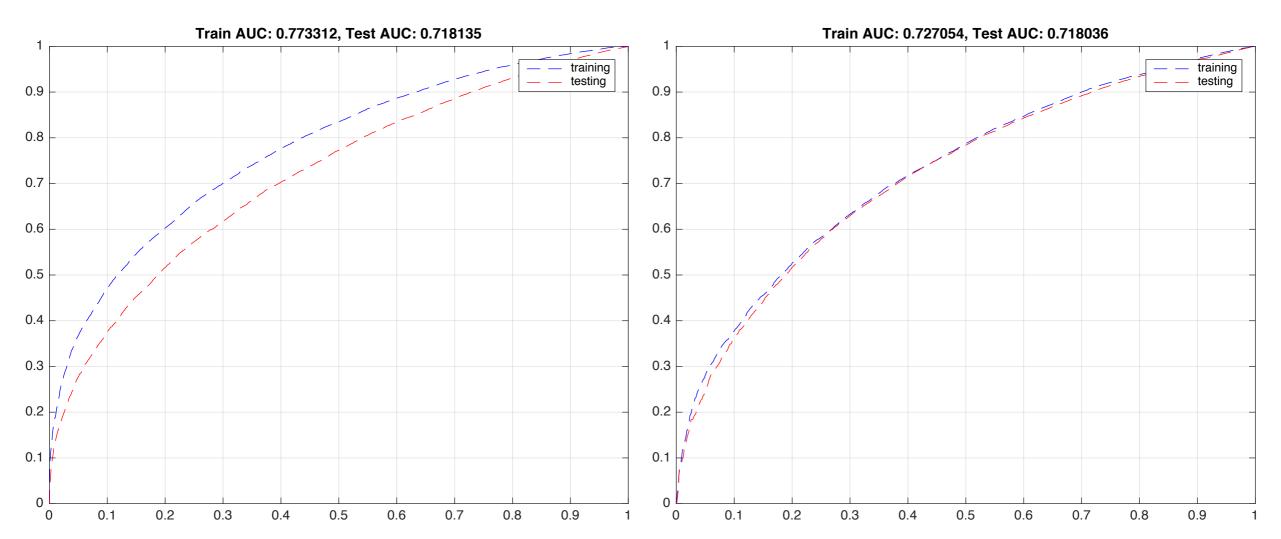
• iteration = 30



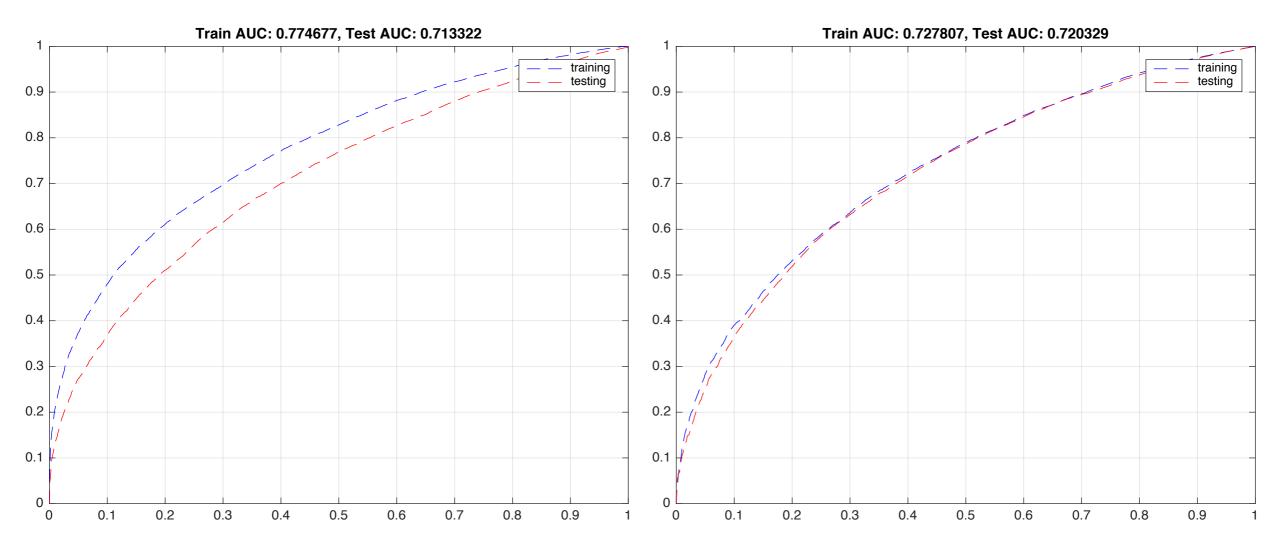
• iteration = 30

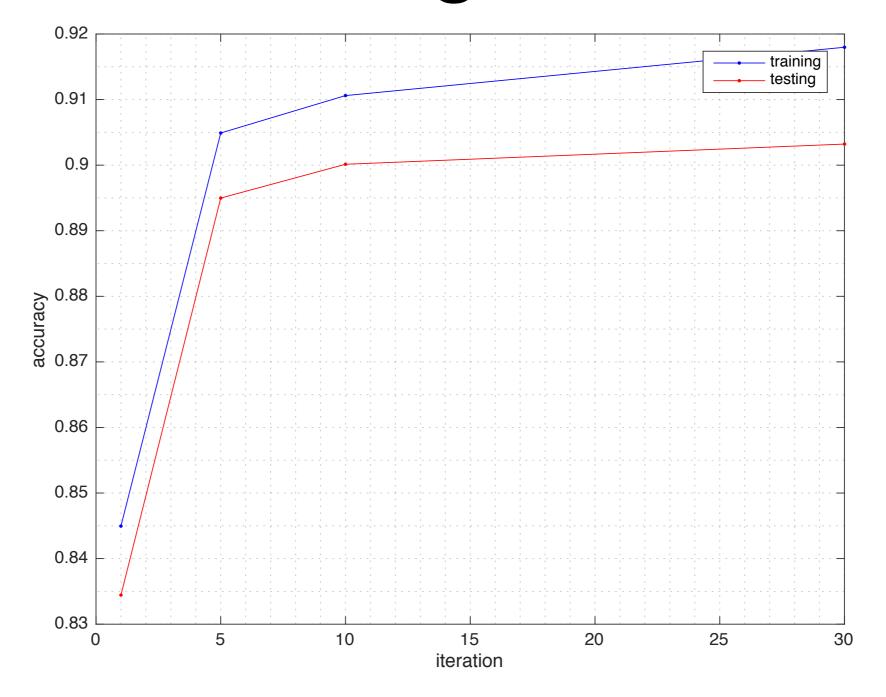


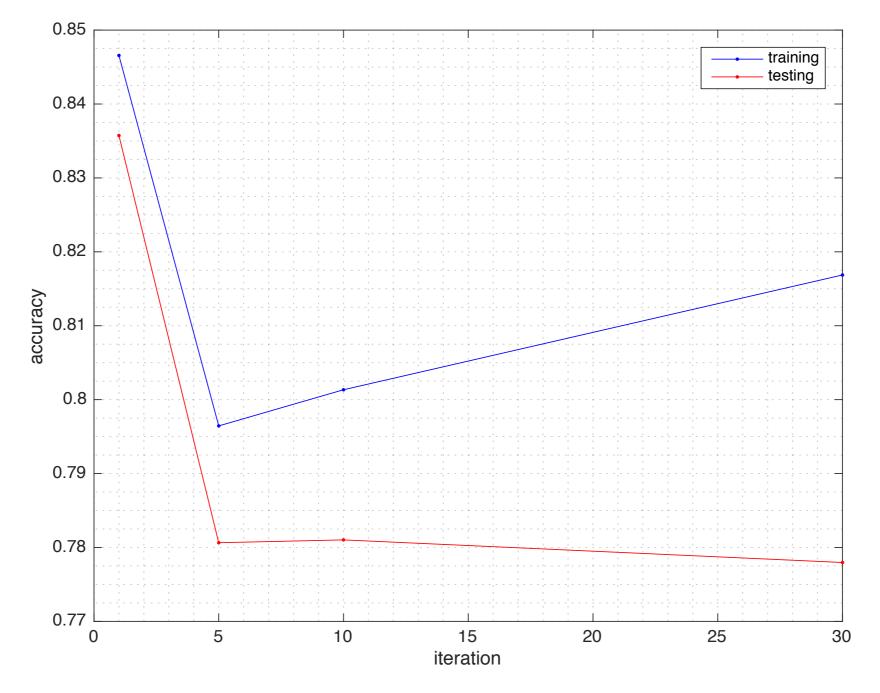
• iteration = 30

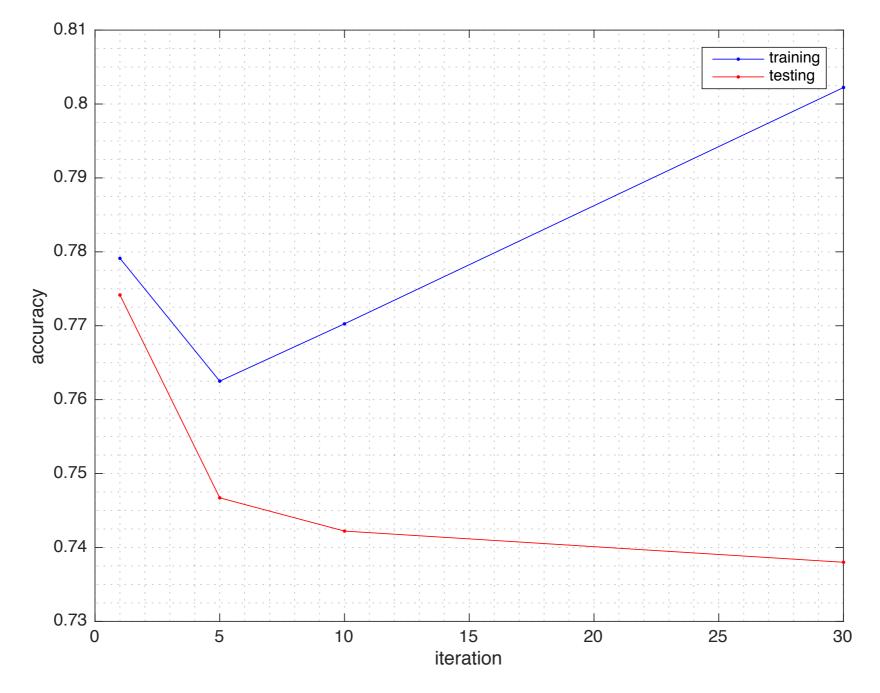


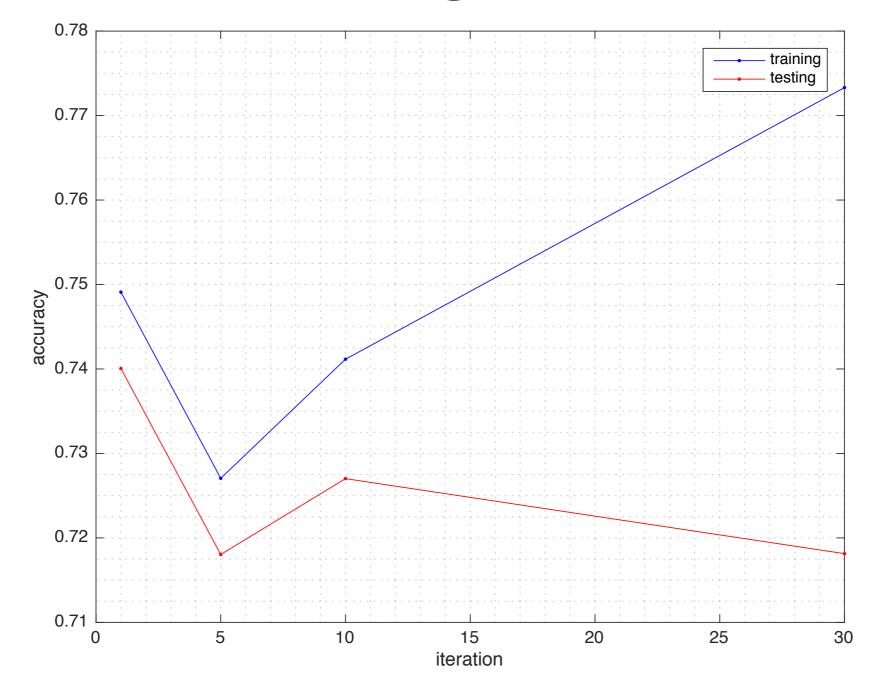
• iteration = 30

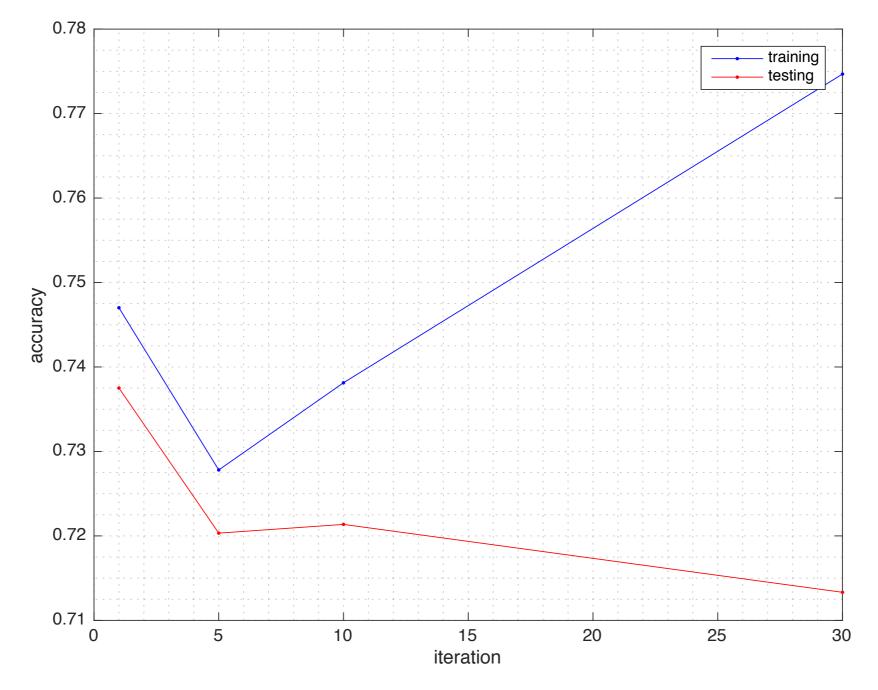












Segmentation Score

iteration = $[30 \ 30 \ 30 \ 30 \ 30]$

iteration = [10 10 10 10 10]

iteration = [55555]

Results:

Stage 1: Weighted: Train=42.3 Test=40.7 Unweighted: Train=39.0 Test=38.9

Stage 2: Weighted: Train=59.8 Test=56.8 Unweighted: Train=49.6 Test=48.8

Stage 3: Weighted: Train=67.1 Test=62.2 Unweighted: Train=53.6 Test=50.2

Stage 4: Weighted: Train=68.9 Test=63.5 Unweighted: Train=54.2 Test=50.4

Stage 5: Weighted: Train=69.6 Test=63.9 Unweighted: Train=54.3 Test=50.4 Stage 1: Weighted: Train=39.4 Test=38.8 Unweighted: Train=37.9 Test=37.9

Results:

Stage 2: Weighted: Train=57.8 Test=56.2 Unweighted: Train=49.2 Test=48.5

Stage 3: Weighted: Train=64.2 Test=61.8 Unweighted: Train=51.7 Test=50.0

Stage 4: Weighted: Train=65.0 Test=62.3 Unweighted: Train=52.1 Test=50.2

Stage 5: Weighted: Train=65.4 Test=62.6 Unweighted: Train=52.2 Test=50.2 Results:

Stage 1: Weighted: Train=38.6 Test=37.4 Unweighted: Train=37.5 Test=37.6

Stage 2: Weighted: Train=54.8 Test=52.9 Unweighted: Train=47.6 Test=47.5

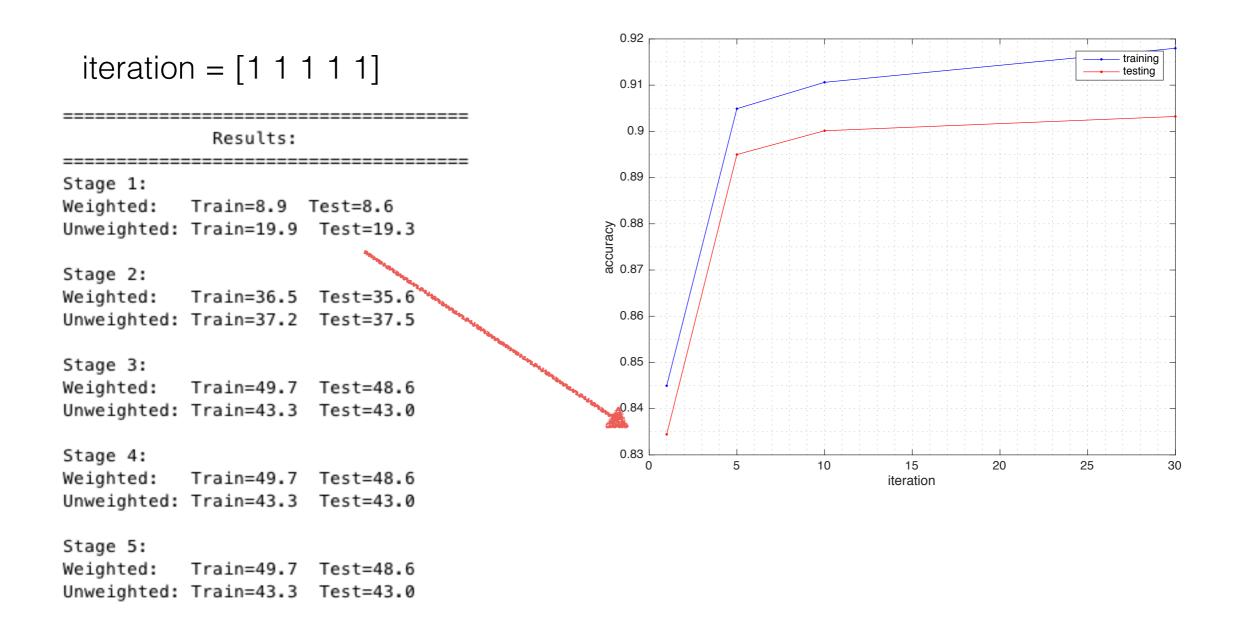
Stage 3: Weighted: Train=61.6 Test=59.0 Unweighted: Train=51.4 Test=49.6

Stage 4: Weighted: Train=62.1 Test=59.7 Unweighted: Train=51.5 Test=49.3

Stage 5: Weighted: Train=62.4 Test=60.3 Unweighted: Train=51.3 Test=49.4

Accuracy at lower stage is more important!

Segmentation Score

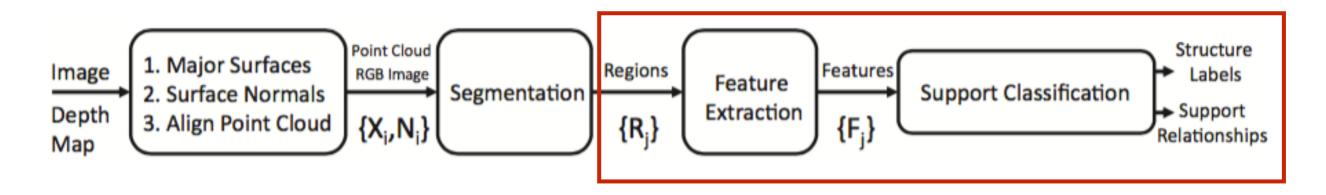


Accuracy at lower stage is more important!

Outline

- Run the segmentation pipeline
- Experiment on the segmentation pipeline
- Run the support inference pipeline
- Address strength and weakness

Support Inference Pipeline

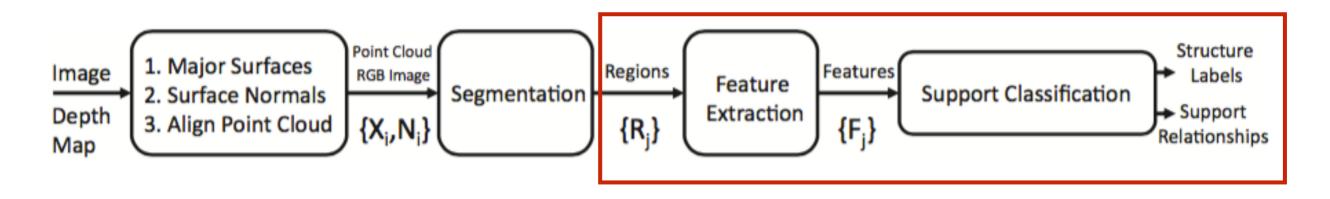


 $\{\mathbf{S}^*, \mathbf{T}^*, \mathbf{M}^*\} = \arg \max_{\mathbf{S}, \mathbf{T}, \mathbf{M}} P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) = \arg \min_{\mathbf{S}, \mathbf{T}, \mathbf{M}} E(\mathbf{S}, \mathbf{T}, \mathbf{M} | I)$

$$P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) \propto \prod_{i=1}^{R} P(I | S_i, T_i) P(I | M_i) P(\mathbf{S}, \mathbf{T}, \mathbf{M})$$

$$E(\mathbf{S}, \mathbf{T}, \mathbf{M}) = -\sum_{i=1}^{R} \log(D_s(F_{i,S_i}^s | S_i, T_i) + \log(D_m(F_i^m | M_i)) + E_P(\mathbf{S}, \mathbf{T}, \mathbf{M}))$$

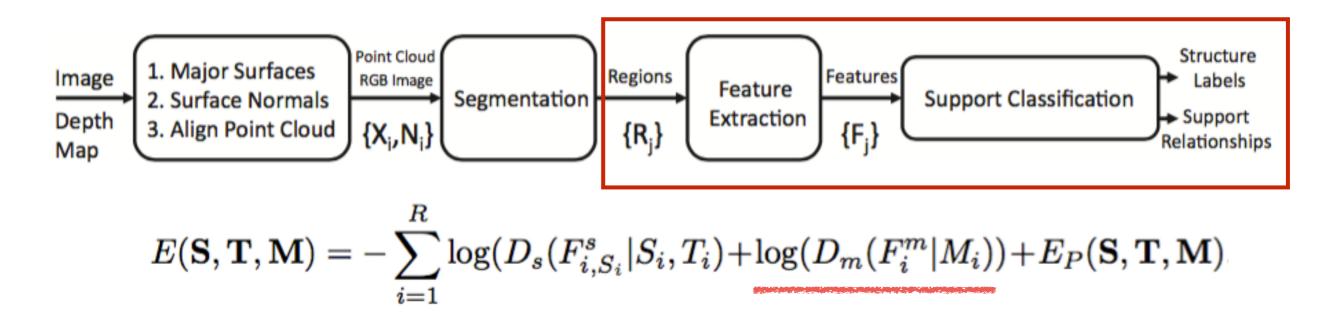
Structure Class Classifier



$$\{\mathbf{S}^*, \mathbf{T}^*, \mathbf{M}^*\} = \arg \max_{\mathbf{S}, \mathbf{T}, \mathbf{M}} P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) = \arg \min_{\mathbf{S}, \mathbf{T}, \mathbf{M}} E(\mathbf{S}, \mathbf{T}, \mathbf{M} | I)$$
$$P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) \propto \prod_{i=1}^{R} P(I | S_i, T_i) P(I | M_i) P(\mathbf{S}, \mathbf{T}, \mathbf{M})$$
$$E(\mathbf{S}, \mathbf{T}, \mathbf{M}) = -\sum_{i=1}^{R} \log(D_s(F_{i, S_i}^s | S_i, T_i) + \log(D_m(F_i^m | M_i)) + E_P(\mathbf{S}, \mathbf{T}, \mathbf{M}))$$

% Extract features and train a classifier for structure-class prediction. run_extract_structure_class_features_seg; run_create_dataset_structure_class_features_seg; run_train_structure_class_classifier_seg;

Structure Class Classifier



```
(region_classifier) Batch 50/101, avgLoss=0.552447
(region_classifier) Batch 51/101, avgLoss=0.552748
(region_classifier) Updates 5000/5000, SSE=2937.837935, MSE: 0.576047
Time elapsed: 0 hours, 0 minutes, 51 seconds.
Time remaining: 0 hours, 0 minutes, 0 seconds.
Acc Train: 0.774624
Acc Test: 0.615448
Mean diag (Train): 0.804457
Mean diag (Test): 0.640516
```

Support Classifier



$$\{\mathbf{S}^{*}, \mathbf{T}^{*}, \mathbf{M}^{*}\} = \arg \max_{\mathbf{S}, \mathbf{T}, \mathbf{M}} P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) = \arg \min_{\mathbf{S}, \mathbf{T}, \mathbf{M}} E(\mathbf{S}, \mathbf{T}, \mathbf{M} | I)$$

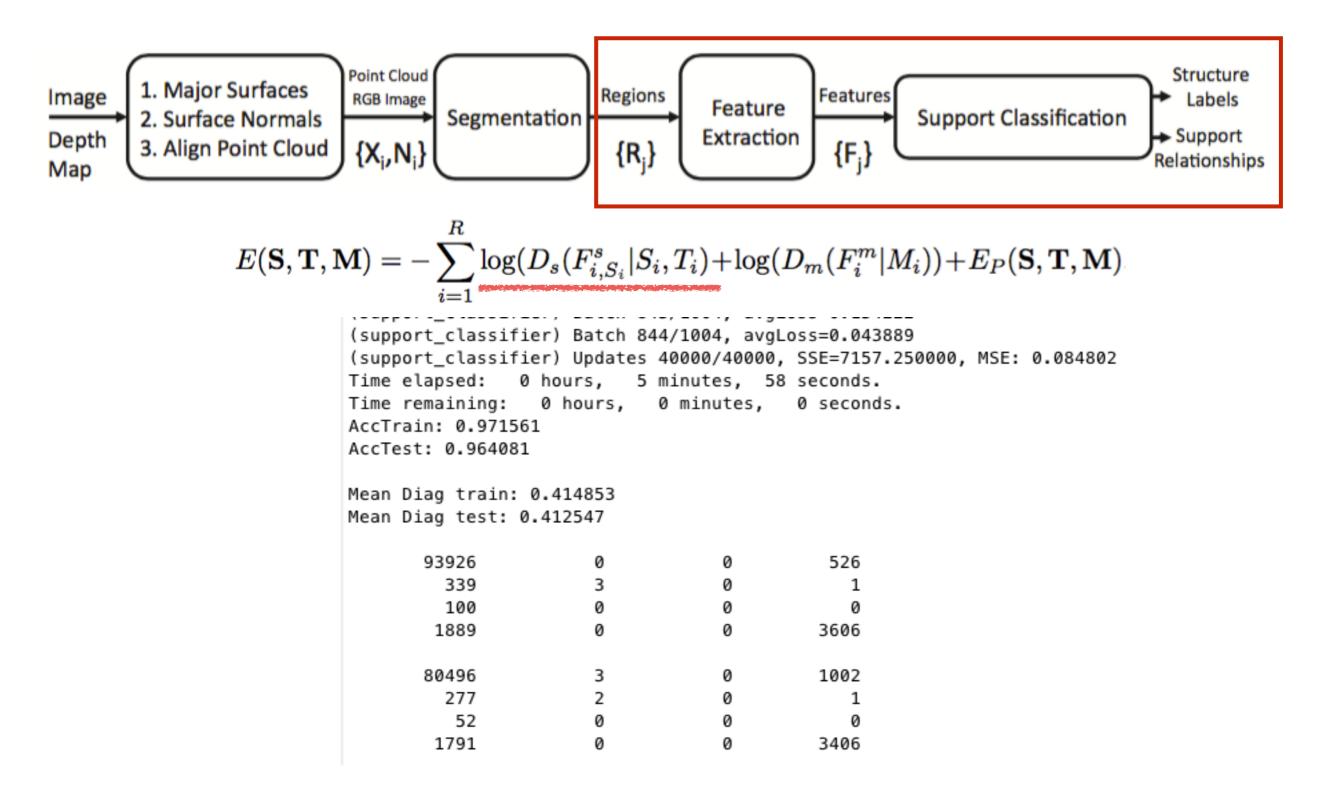
$$P(\mathbf{S}, \mathbf{T}, \mathbf{M} | I) \propto \prod_{i=1}^{R} P(I | S_{i}, T_{i}) P(I | M_{i}) P(\mathbf{S}, \mathbf{T}, \mathbf{M})$$

$$E(\mathbf{S}, \mathbf{T}, \mathbf{M}) = -\sum_{i=1}^{R} \log(D_{s}(F_{i, S_{i}}^{s} | S_{i}, T_{i}) + \log(D_{m}(F_{i}^{m} | M_{i})) + E_{P}(\mathbf{S}, \mathbf{T}, \mathbf{M})$$

% Extract features and train a classifier for local support prediction.
run_extract_support_features_seg;
run_create_dataset_support_features_seg;
run_train_support_classifier_seg;

containment, geometry, and horz feature take ~1 day to extract features for 292 images!

Support Classifier



Infer by Linear Program

$$\arg\min_{\mathbf{s},\mathbf{m},\mathbf{w}} \sum_{i,j} \theta_{i,j}^s s_{i,j} + \sum_{i,u} \theta_{i,u}^m m_{i,u} + \sum_{i,j,u,v} \theta_{i,j,u,v}^w w_{i,j}^{u,v} \tag{10}$$

s.t.
$$\sum_{j} s_{i,j} = 1$$
, $\sum_{u} m_{i,u} = 1 \ \forall i$ (11)

$$\sum_{j,u,v} w_{i,j}^{u,v} = 1, \qquad \forall i$$
 (12)

$$s_{i,2R'+1} = m_{i,1}, \qquad \forall i \tag{13}$$

$$\sum_{u,v} w_{i,j}^{u,v} = s_{i,j}, \qquad \forall u,v \tag{14}$$

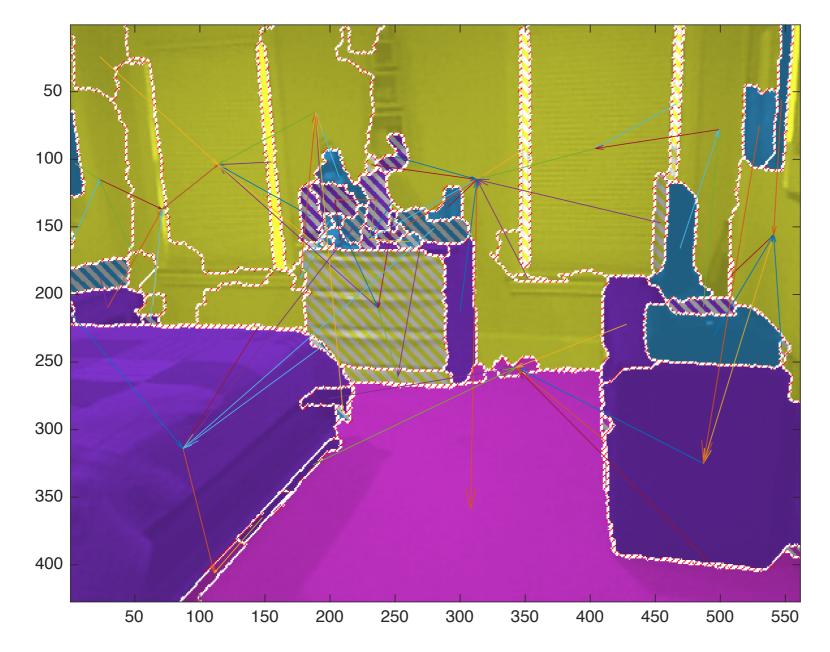
$$\sum_{j,v} w_{i,j}^{u,v} \le m_{i,u}, \qquad \forall i,u \tag{15}$$

$$\frac{s_{i,j}, \ m_{i,u}, \ w_{i,j}^{u,v} \in \{0,1\}, \ \forall i,j,u,v}{\text{Si} \ i, \ m_{i,u}, \ w_{i,j}^{u,v} \in [0,1], \ \forall i, i, u, v}$$
(16)

$$s_{i,j}, m_{i,u}, w_{i,j}^{u,v} \in [0,1], \quad \forall i, j, u, v.$$
 (17)

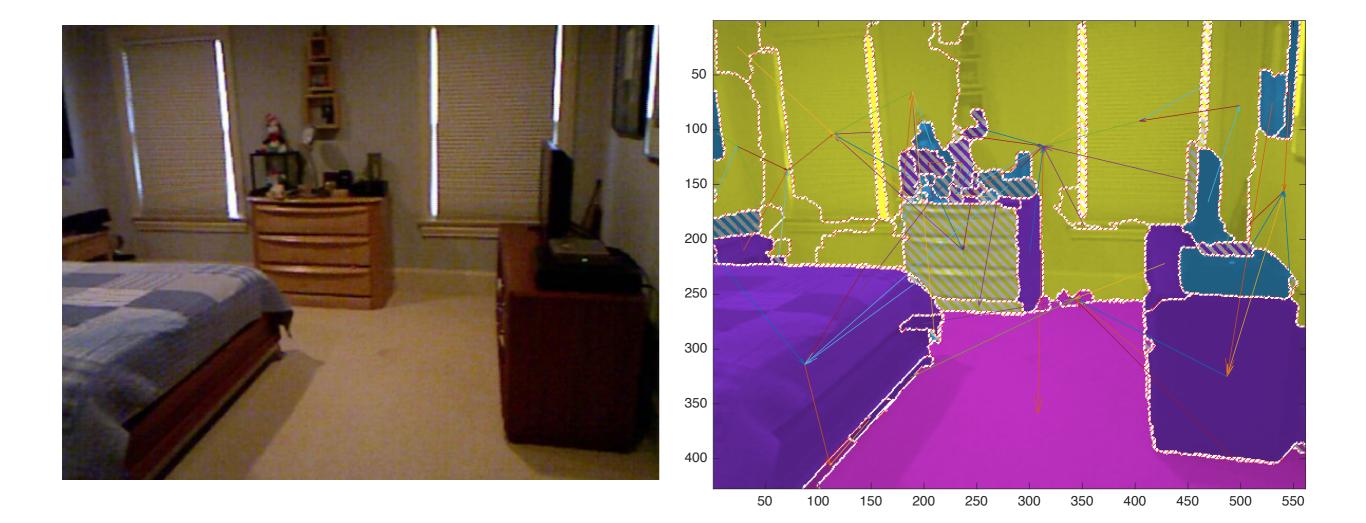
6 minutes for an image!

Structure and Support Inference

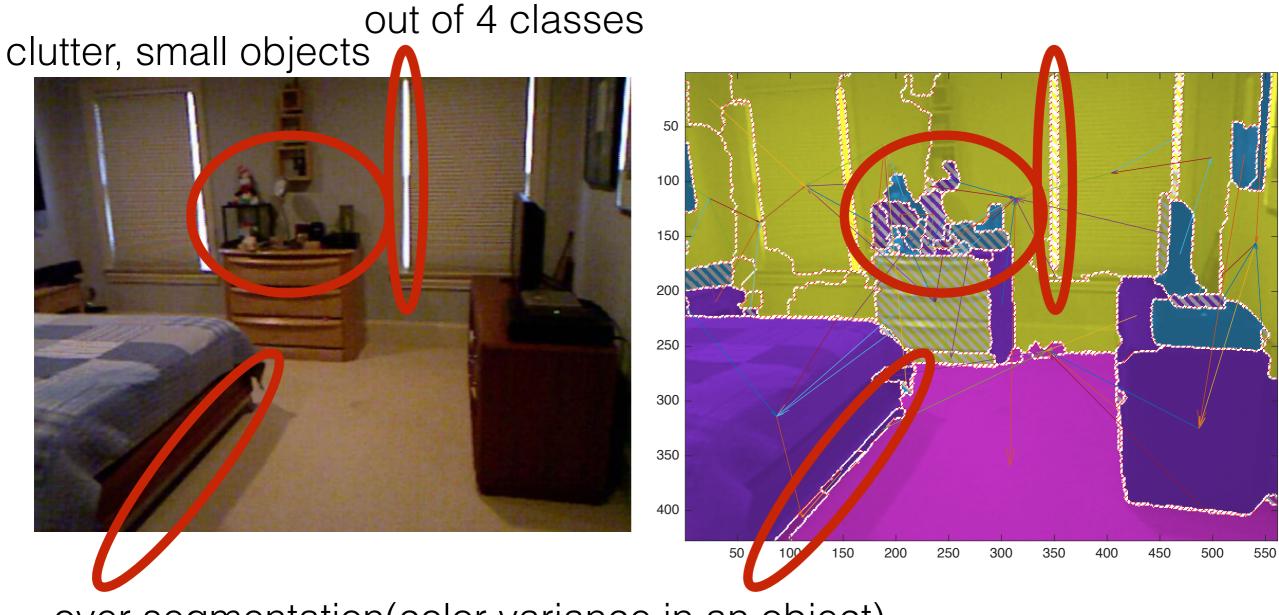


stripe: incorrect structure prediction

Structure and Support Inference



Structure and Support Inference



over-segmentation(color variance in an object)

Outline

- Run the segmentation pipeline
- Experiment on the segmentation pipeline
- Run the support inference pipeline
- Address strength and weakness

Strength

- Reason joint assignment for structure and support
- ~73% accuracy if ground truth segmentation is given

Weakness

- Slow in testing time
 -5 minutes for feature extraction
 -6 minutes for inference by linear programming
- Clutters, small(thin) objects, color variance in objects
- Only 4 structure classes(no human, pet,...etc)
- ~55% accuracy if bottom up segmentation followed by support inference

Reference

 Code: <u>http://cs.nyu.edu/~silberman/projects/</u> <u>indoor_scene_seg_sup.html</u>