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Objective

Generate video descriptions.



S2VT Overview
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Experimental Setup

Code: Forked from author’s github account

Frame Sampling: 1in 10 (unless otherwise mentioned)

Network Architecture: VGG CNN + 2 layer LSTM

Dataset : MSVD Youtube dataset (Avg Length 10.2 s, #sentences per video =41)
Vocabulary : MSVD + MPII-MD + MVAD

Performance Metric: METEOR

Evaluation Tool: coco _evaluation


https://github.com/vsubhashini/caffe/tree/recurrent/examples/s2vt
http://www.cs.cmu.edu/~alavie/METEOR/

Forward Model

e Ableto learn abstract attributes like young etc to reasonable extent.

e Able to capture main content of video in most cases.
PROBLEMS:

e Longsentences repeat words multiple times leading to lower quality sentences
- The boys are playing with a group of a group of a group of people is sitting
on a group of a group of people are watching a gym
- Awoman is cutting a piece of a piece of a pair of a pair of a pair.

- Amanis cutting a large of a large large large large floor.



Backward Model

® Process framesin reverse order!!
e Seems to perform better than forward model on validation
set but almost similar performance on test set.

e How to choose best backward model ?
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Bidirectional Model

e Motivated from Bidirectional N gram models used for
Language Modelling in NLP
e Combine forward and backward models.
- How do we select forward and backward model ?
- Combining strategy ?
- How are weights selected ?



Forward Mode! Weight
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MODEL

Performance Comparison of all models
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http://www.youtube.com/watch?v=T1jt-GPSO8c

Your description ??


http://www.youtube.com/watch?v=pfnIpyF6s-M

FORWARD:

The boys are playing with a group of a group of a group of
people is sitting on a group of a group of people are watching
a gym!!

BACKWARD: Two boys are dancing.

BIDIRECTIONAL: The boys are playing.

LABEL: Three men are dancing in beach towels.

This eg shows utility of Bidirectional Model.





http://www.youtube.com/watch?v=0i_4DfA1ULI

Your description ??


http://www.youtube.com/watch?v=VTjhZ7VkHp4

FORWARD: A man is using a piece of a sharp.
BACKWARD: A person is cutting a piece of a brush.

BIDIRECTIONAL: A man is cutting a piece of a brush.

LABEL: A person is performing some card tricks.

All Fail :(



How is information distributed within video ?

Conjecture: Central part of video contains more
relevant information than frames at beginning and
end for most videos
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Does Model Capture Temporal Information ?

Performance Comparison of Random Models
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Conclusions

e Bidirectional model is more powerful than forward or
backward model.
e Frames at start and end contain less information.



Future Work

e Trycombining bidirectional with optical flow model.

e Tryusing gaussian sampling centred on video’s centre

e Isit more suitable for specific kinds of videos ? Like
generating sports commentary ?
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Thank You :)



