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Objective

To build a framework for Text Recognition in Natural Images
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Challenges

e Inconsistent lighting, distortions, background noise, variable
fonts, orientations etc..

e Existing Scene Text datasets are very small and cover limited
vocabulary.



Synthetic Data Engine
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Figure 1: (a) The text generation process after font rendering, creating and coloring the image-
layers, applying projective distortions, and after image blending. (b) Some randomly sampled data
created by the synthetic text engine.
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Models

Authors propose 3 Deep Learning Models:

e Dictionary Encoding
e Character Sequence Encoding

e Bag of NGrams encoding



Base Architecture
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e 2 x 2 Max Pooling after 1st, 2nd and 3rd Convolutional Layer
e SGD for optimization
e Dropout for regularization
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Dictionary Encoding (DICT) [Constrained Language Model]

Multiclass Classification Problem (One class per word w in Dictionary W)
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The number of classes can be scaled to 90k classes.

Requires incremental training — initialize learning with

5k classes, incrementally increase number of classes
as learning progresses.
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Character Sequence Encoding (CHAR)
CNN with multiple independent classifiers (one for each character)
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e No language model but need to fix max length of the word.
e Suitable for unconstrained recognition
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BAG of N-Grams Encoding (NGRAM)

Represent a word as bag of N-grams.
Eg G(Spires) ={s, p, i, r, e, s, sp, pi, ir, re, es, spi, pir, ire, res }

IX1x10000  Vjisyally model 10k common
- 1, 2, 3, and 4-grams.

32x100x1

ak 10k independent binary
ra  Classifiers.

Result is N-gram detection
raze vector.

Two ways to recover words:
 Find nearest neighbour of output with ideal outputs of dictionary words.
 Train a linear SVM for each dictionary word, using training data outputs.
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+2 Models

e Lack of overfitting on basic models suggests their under-capacity.
e Try larger models to investigate the effect of additional model capacity.
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e Extra convolutional layer with 512 filters
e Extra 4096 unit fully connected layer at the end



Recognition Accuracy %
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Experiments and Results

Synthetichata Contributions
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Base Models vs +2 Models
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Quality of Synthetic Data
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Effect of Dictionary Size
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IC03-50 IC03- SVI-50 SVT IC13 IIT5k-50 IIT5k-1k
Model Full
Baseline (ABBYY) 56.0 55.0 35.0 B 3 24.3 -
Wang, ICCV ‘11 76.0 62.0 570 B - - -
Bissacco, ICCV ‘13 - - 90.4 78.0 87.6 - -
Yao, CVPR ‘14 88.5 80.3 75.9 - - 80.2 69.3
Jaderberg, ECCV ‘14 96.2 91.5 86.1 - - - -
Gordo, arXiv ‘14 - - 90.7 B - 93.3 86.6
DICT-IC03-Full 99.2 98.1 - - - - -
DICT-SVT-Full - - 96.1 87.0 . - -
DICT+2-90k 98.7 98.6 95.4 80.7 90.8 97.1 92.7
CHAR+2 96.7 94.0 92.6 68.0 79.5 95.5 85.4
NGRAM+2-SVM 96.5 94.0 - - - - -
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Examples

-

z,22,i22
DICT: pizza CHAR: pizz

' i, n,y, im, ji, mm, my,
l M h4 l imm, imn, lim, mim,

B o o a L - mnay, tim’ immi
DICT: jimmy CHAR: limmy

L a, n,ot, at, io, on, ti,
Za, ati, ion, iza, tio, zat,
4 tion, atio, izat, zati

DICT: organization

CHAR: organaation

a, n,o,t, at, io, on, i,
za, ati, ion, iza, tio, zat,
tion, atio, izat, zati

DICT: western CHAR: western
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Applications

® Image Retrieval

e Self Driving Cars


http://zeus.robots.ox.ac.uk/textsearch/#/search/
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Discussion and Questions

How fair is it to assume knowledge of target lexicon ?

Has synthetic data been used in any other domains ?

Can we use RNN models for predicting words character level
classification ?

Are there better ways of mapping Ngrams to words ?

How are collisions handled in Ngrams model ?

How diverse does the text synthesis output need to be ?
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